

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

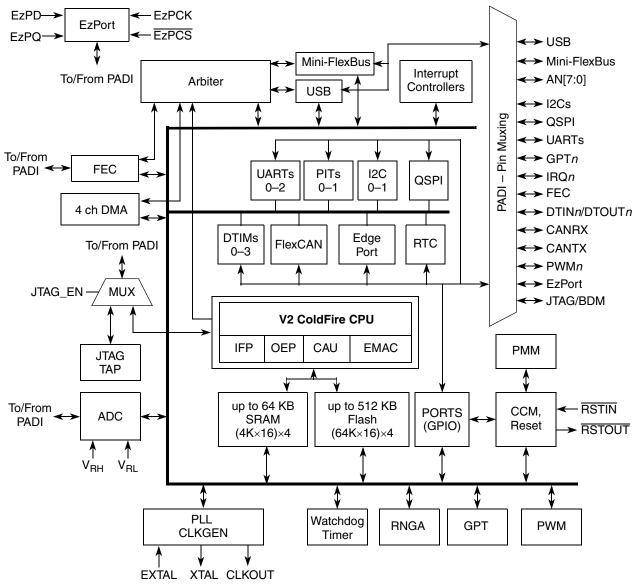
Details

Details	
Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, QSPI, UART/USART, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	96
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf52259cvn80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Family Configurations


Table 1. MCF52259 Family Configurations

Module	52252	52254	52255	52256	52258	52259
Version 2 ColdFire Core with eMAC (Enhanced multiply-accumulate unit) and CAU (Cryptographic acceleration unit)	•	•	•	•	•	•
System Clock	up to 66 c	or 80 MHz ¹	up to 80 MHz ¹			up to 80 MHz ¹
Performance (Dhrystone 2.1 MIPS)			up to 6	63 or 76		1
Flash	256 KB	512 KB	512 KB	256 KB	512 KB	512 KB
Static RAM (SRAM)	32 KB	64 KB	64 KB	32 / 64 KB	64 KB	64 KB
Two Interrupt Controllers (INTC)	٠	•	•	•	٠	•
Fast Analog-to-Digital Converter (ADC)	٠	•	•	•	•	•
USB On-The-Go (USB OTG)	٠	•	•	•	•	•
Mini-FlexBus external bus interface	—	—	—	•	•	•
Fast Ethernet Controller (FEC)	٠	•	•	•	•	•
Random Number Generator and Cryptographic Acceleration Unit (CAU)	_	_	•	_	_	•
FlexCAN 2.0B Module	Varies	Varies	•	Varies	Varies	•
Four-channel Direct-Memory Access (DMA)	٠	•	•	•	•	•
Software Watchdog Timer (WDT)	•	•	•	•	•	•
Secondary Watchdog Timer	٠	•	•	•	•	•
Two-channel Periodic Interrupt Timer (PIT)	2	2	2	2	2	2
Four-Channel General Purpose Timer (GPT)	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4
QSPI	٠	•	•	•	•	•
UART(s)	3	3	3	3	3	3
12C	2	2	2	2	2	2
Eight/Four-channel 8/16-bit PWM Timer	٠	•	•	•	•	•
General Purpose I/O Module (GPIO)	•	•	•	•	•	•
Chip Configuration and Reset Controller Module	•	•	•	•	•	•
Background Debug Mode (BDM)	•	•	•	•	•	•
JTAG - IEEE 1149.1 Test Access Port	•	•	•	•	•	•
Package		100 LQFP		144 LQ	FP or 144 N	IAPBGA

¹ 66 MHz = 63 MIPS; 80 MHz = 76 MIPS

1.1 Block Diagram

Figure 1 shows a top-level block diagram of the device. Package options for this family are described later in this document.

1.2 Features

1.2.1 Feature Overview

The MCF52259 family includes the following features:

- Version 2 ColdFire variable-length RISC processor core
 - Static operation
 - 32-bit address and data paths on-chip

- Up to 80 MHz processor core frequency
- 40 MHz or 33 MHz peripheral bus frequency
- Sixteen general-purpose, 32-bit data and address registers
- Implements ColdFire ISA_A with extensions to support the user stack pointer register and four new instructions for improved bit processing (ISA_A+)
- Enhanced Multiply-Accumulate (EMAC) unit with four 32-bit accumulators to support $16 \times 16 \rightarrow 32$ or $32 \times 32 \rightarrow 48$ operations
- Cryptographic Acceleration Unit (CAU)
 - Tightly-coupled coprocessor to accelerate software-based encryption and message digest functions
 - Support for DES, 3DES, AES, MD5, and SHA-1 algorithms
- System debug support
 - Real-time trace for determining dynamic execution path
 - Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)
 - Real-time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) configurable into a 1- or 2-level trigger
- On-chip memories
 - Up to 64 KB dual-ported SRAM on CPU internal bus, supporting core, DMA, and USB access with standby power supply support for the first 16 KB
 - Up to 512 KB of interleaved flash memory supporting 2-1-1-1 accesses
- Power management
 - Fully static operation with processor sleep and whole chip stop modes
 - Rapid response to interrupts from the low-power sleep mode (wake-up feature)
 - Clock enable/disable for each peripheral when not used (except backup watchdog timer)
 - Software controlled disable of external clock output for low-power consumption
- FlexCAN 2.0B module
 - Based on and includes all existing features of the Freescale TouCAN module
 - Full implementation of the CAN protocol specification version 2.0B
 - Standard data and remote frames (up to 109 bits long)
 - Extended data and remote frames (up to 127 bits long)
 - Zero to eight bytes data length
 - Programmable bit rate up to 1 Mbit/s
 - Flexible message buffers (MBs), totalling up to 16 message buffers of 0–8 byte data length each, configurable as Rx or Tx, all supporting standard and extended messages
 - Unused MB space can be used as general purpose RAM space
 - Listen-only mode capability
 - Content-related addressing
 - No read/write semaphores
 - Three programmable mask registers: global for MBs 0–13, special for MB14, and special for MB15
 - Programmable transmit-first scheme: lowest ID or lowest buffer number
 - Time stamp based on 16-bit free-running timer
 - Global network time, synchronized by a specific message
 - Maskable interrupts
- Universal Serial Bus On-The-Go (USB OTG) dual-mode host and device controller
 - Full-speed / low-speed host controller
 - USB 1.1 and 2.0 compliant full-speed / low speed device controller
 - 16 bidirectional end points

MCF52259 ColdFire Microcontroller, Rev. 5

- DMA or FIFO data stream interfaces
- Low power consumption
- OTG protocol logic
- Fast Ethernet controller (FEC)
- 10/100 BaseT/TX capability, half duplex or full duplex
- On-chip transmit and receive FIFOs
- Built-in dedicated DMA controller
- Memory-based flexible descriptor rings
- Mini-FlexBus
 - External bus interface available on 144 pin packages
 - Supports glueless interface with 8-bit ROM/flash/SRAM/simple slave peripherals. Can address up to 2 MB of addresses
 - 2 chip selects (FB_CS[1:0])
 - Non-multiplexed mode: 8-bit dedicated data bus, 20-bit address bus
 - Multiplexed mode: 16-bit data and 20-bit address bus
 - FB CLK output to support synchronous memories
 - Programmable base address, size, and wait states to support slow peripherals
 - Operates at up to 40 MHz (bus clock) in 1:2 mode or up to 80 MHz (core clock) in 1:1 mode
 - Three universal asynchronous/synchronous receiver transmitters (UARTs)
 - 16-bit divider for clock generation
 - Interrupt control logic with maskable interrupts
 - DMA support
 - Data formats can be 5, 6, 7, or 8 bits with even, odd, or no parity
 - Up to two stop bits in 1/16 increments
 - Error-detection capabilities
 - Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs
 - Transmit and receive FIFO buffers
- Two I2C modules
 - Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads
 - Fully compatible with industry-standard I2C bus
 - Master and slave modes support multiple masters
 - Automatic interrupt generation with programmable level
 - Queued serial peripheral interface (QSPI)
 - Full-duplex, three-wire synchronous transfers
 - Up to three chip selects available
 - Master mode operation only
 - Programmable bit rates up to half the CPU clock frequency
 - Up to 16 pre-programmed transfers
- Fast analog-to-digital converter (ADC)
 - Eight analog input channels
 - 12-bit resolution
 - Minimum 1.125 μs conversion time
 - Simultaneous sampling of two channels for motor control applications
 - Single-scan or continuous operation
 - Optional interrupts on conversion complete, zero crossing (sign change), or under/over low/high limit

MCF52259 ColdFire Microcontroller, Rev. 5

- Unused analog channels can be used as digital I/O
- Four 32-bit timers with DMA support
 - 12.5 ns resolution at 80 MHz
 - Programmable sources for clock input, including an external clock option
 - Programmable prescaler
 - Input capture capability with programmable trigger edge on input pin
 - Output compare with programmable mode for the output pin
 - Free run and restart modes
 - Maskable interrupts on input capture or output compare
 - DMA trigger capability on input capture or output compare
- Four-channel general purpose timer
 - 16-bit architecture
 - Programmable prescaler
 - Output pulse-widths variable from microseconds to seconds
 - Single 16-bit input pulse accumulator
 - Toggle-on-overflow feature for pulse-width modulator (PWM) generation
 - One dual-mode pulse accumulation channel
- Pulse-width modulation timer
 - Support for PCM mode (resulting in superior signal quality compared to conventional PWM)
 - Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution
 - Programmable period and duty cycle
 - Programmable enable/disable for each channel
 - Software selectable polarity for each channel
 - Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached (PWM counter reaches zero) or when the channel is disabled.
 - Programmable center or left aligned outputs on individual channels
 - Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies
 - Emergency shutdown
 - Two periodic interrupt timers (PITs)
 - 16-bit counter
 - Selectable as free running or count down
- Real-Time Clock (RTC)
 - Maintains system time-of-day clock
 - Provides stopwatch and alarm interrupt functions
 - Standby power supply (Vstby) keeps the RTC running when the system is shut down
- Software watchdog timer
 - 32-bit counter
 - Low-power mode support
- Backup watchdog timer (BWT)
 - Independent timer that can be used to help software recover from runaway code
 - 16-bit counter
 - Low-power mode support
- Clock generation features
 - Crystal, on-chip trimmed relaxation oscillator, or external oscillator reference options
 - Trimmed relaxation oscillator

1.2.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the core includes the enhanced multiply-accumulate (EMAC) unit for improved signal processing capabilities. The EMAC implements a three-stage arithmetic pipeline, optimized for 32x32 bit operations, with support for four 48-bit accumulators. Supported operands include 16- and 32-bit signed and unsigned integers, signed fractional operands, and a complete set of instructions to process these data types. The EMAC provides support for execution of DSP operations within the context of a single processor at a minimal hardware cost.

1.2.3 Integrated Debug Module

The ColdFire processor core debug interface is provided to support system debugging with low-cost debug and emulator development tools. Through a standard debug interface, access to debug information and real-time tracing capability is provided on 144-lead packages. This allows the processor and system to be debugged at full speed without the need for costly in-circuit emulators.

The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register, a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the dedicated debug serial communication channel or from the processor's supervisor mode programming model. The breakpoint registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception. This device implements revision B+ of the ColdFire Debug Architecture.

The processor's interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be serviced while processing a debug interrupt event. This ensures the system continues to operate even during debugging.

To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining processor activity at the CPU's clock rate. The device includes a new debug signal, ALLPST. This signal is the logical AND of the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).

The full debug/trace interface is available only on the 144-pin packages. However, every product features the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.

1.2.4 JTAG

The processor supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a boundary-scan register, and a 32-bit ID register). The boundary scan register links the device's pins into one shift register. Test logic, implemented using static logic design, is independent of the device system logic.

The device implementation can:

- Perform boundary-scan operations to test circuit board electrical continuity
- Sample system pins during operation and transparently shift out the result in the boundary scan register
- Bypass the device for a given circuit board test by effectively reducing the boundary-scan register to a single bit
- Disable the output drive to pins during circuit-board testing
- Drive output pins to stable levels

The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly until manually stopped.

The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.

During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.

Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.

1.2.16 DMA Timers (DTIM0–DTIM3)

There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the device. Each module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to operate from the system clock or from an external clock source using one of the DTIN*n* signals. If the system clock is selected, it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual timer counter register (TCR*n*). Each of these timers can be configured for input capture or reference (output) compare mode. Timer events may optionally cause interrupt requests or DMA transfers.

1.2.17 General Purpose Timer (GPT)

The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, channel three, can be configured as a pulse accumulator.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter. The input capture and output compare functions allow simultaneous input waveform measurements and output waveform generation. The input capture function can capture the time of a selected transition edge. The output compare function can generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.

1.2.18 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running down-counter.

1.2.19 Real-Time Clock (RTC)

The Real-Time Clock (RTC) module maintains the system (time-of-day) clock and provides stopwatch, alarm, and interrupt functions. It includes full clock features: seconds, minutes, hours, days and supports a host of time-of-day interrupt functions along with an alarm interrupt.

1.2.20 Pulse-Width Modulation (PWM) Timers

The device has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to 100%. The timer supports PCM mode, which results in superior signal quality when compared to that of a conventional PWM. The PWM outputs have programmable polarity, and can be programmed as left aligned outputs or center aligned outputs. For

higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.2.21 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.

1.2.22 Backup Watchdog Timer

The backup watchdog timer is an independent 16-bit timer that, like the software watchdog timer, facilitates recovery from runaway code. This timer is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown. The backup watchdog timer can be clocked by either the relaxation oscillator or the system clock.

1.2.23 Phase-Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.2.24 Interrupt Controllers (INTCn)

The device has two interrupt controllers that supports up to 128 interrupt sources. There are 56 programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for software interrupt requests.

1.2.25 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCR*n*[START] bit or by the occurrence of certain UART or DMA timer events.

1.2.26 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- Watchdog timer
- Phase locked-loop (PLL) loss of lock / loss of clock
- Software
- Low-voltage detector (LVD)
- JTAG

Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags indicating the last source of reset and a control bit for software assertion of the $\overline{\text{RSTO}}$ pin.

1.2.27 GPIO

Nearly all pins on the device have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all eight bits. Each port has registers that configure, monitor, and control the port pin.

1.2.28 Part Numbers and Packaging

This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS information.

Freescale Part Number	FlexCAN	Encryption	Speed (MHz)	Flash (KB)	SRAM (KB)	Package	Temp range (°C)		
MCF52252AF80	—	—	80	256	056	056	32	100 LQFP	0 to +70
MCF52252CAF66	•	—	66	250	52		-40 to +85		
MCF52254AF80	—	—	80	512	64	100 LQFP	0 to +70		
MCF52254CAF66	•	—	66	512	04		-40 to +85		
MCF52255CAF80	•	•	80	512	64	100 LQFP	-40 to +85		
MCF52256AG80	—	—	80		32	144 LQFP	0 to +70		
MCF52256CAG66	•	—	66	256	64		-40 to +85		
MCF52256CVN66	•	—	66	250	64	144 MAPBGA	-40 to +85		
MCF52256VN80	—	—	80		32		0 to +70		
MCF52258AG80	—	—	80			144 LQFP	0 to +70		
MCF52258CAG66	•	—	66	512	64		-40 to +85		
MCF52258CVN66	•	—	66	512	04	144 MAPBGA	-40 to +85		
MCF52258VN80	—	—	80				0 to +70		
MCF52259CAG80	•	•	80	512	64	144 LQFP	-40 to +85		
MCF52259CVN80	•	•	00	512	04	144 MAPBGA	-40 to +85		

 Table 2. Orderable part number summary

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
RAM standby supply voltage	V _{STBY}	+1.8 to 3.5	V
USB standby supply voltage	V _{DDUSB}	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	-0.3 to +4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	I _{DD}	25	mA
Operating temperature range (packaged)	Т _А (Т _L - Т _Н)	-40 to 85 or 0 to 70 ⁶	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Table 4. Absolute Maximum Ratings^{1, 2}

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or V_{DD}).

³ Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- $^4~$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}
- ⁵ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (e.g., no clock).

⁶ Depending on the packaging; see orderable part number summary (Table 2)

	Characteristic	;	Symbol	Value	Unit
100 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	53 ^{13,14}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ _{JA}	39 ^{1,15}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ _{JMA}	42 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	33 ^{1,3}	°C/W
	Junction to board	—	θ _{JB}	25 ¹⁶	°C/W
	Junction to case	—	θ _{JC}	9 ¹⁷	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ¹⁸	°C/W
	Maximum operating junction temperature	—	Tj	105	°C

Table 8. Thermal Characteristics (continued)

 θ_{JA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ³ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- ⁷ θ_{JA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ⁸ Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ⁹ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.
- ¹⁰ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ¹¹ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ¹² Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- ¹³ θ_{JA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ¹⁴ Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ¹⁵ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.

² Reprogramming of a flash memory array block prior to erase is not required.

2.5 EzPort Electrical Specifications

Table 11. EzPort Electrical Specifications

Name	Characteristic	Min	Max	Unit
EP1	EPCK frequency of operation (all commands except READ)		f _{sys} / 2	MHz
EP1a	EPCK frequency of operation (READ command)	_	f _{sys} / 8	MHz
EP2	EPCS_b negation to next EPCS_b assertion	$2 \times T_{cyc}$		ns
EP3	EPCS_B input valid to EPCK high (setup)	5	_	ns
EP4	EPCK high to EPCS_B input invalid (hold)	5	_	ns
EP5	EPD input valid to EPCK high (setup)	2		ns
EP6	EPCK high to EPD input invalid (hold)	5	_	ns
EP7	EPCK low to EPQ output valid (out setup)	—	12	ns
EP8	EPCK low to EPQ output invalid (out hold)	0		ns
EP9	EPCS_B negation to EPQ tri-state		12	ns

2.6 ESD Protection

Table 12. ESD Protection Characteristics^{1, 2}

Characteristics	Symbol	Value	Units
ESD target for Human Body Model	HBM	2000	V
ESD target for Machine Model	MM	200	V
HBM circuit description	R _{series}	1500	Ω
	С	100	pF
MM circuit description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) Positive pulses Negative pulses 	_	1	—
Number of pulses per pin (MM) Positive pulses Negative pulses 		3 3	_
Interval of pulses	—	1	sec

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

2.9 USB Operation

Characteristic	Symbol	Value	Unit
Minimum core speed for USB operation	f _{sys_USB_min}	16	MHz

Table 15. USB Operation Specifications

2.10 Mini-FlexBus External Interface Specifications

A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 80 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used.

All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values.

Table 16. Mini-FlexBus AC Timing Specifications

Num	Characteristic	Min	Max	Unit	Notes
	Frequency of Operation	—	80	MHz	
MB1	Clock Period	12.5	—	ns	
MB2	Output Valid	—	8	ns	1
MB3	Output Hold	2		ns	1
MB4	Input Setup	6	—	ns	2
MB5	Input Hold	0	—	ns	2

¹ Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE.

² Specification is valid for all MB_D[7:0].

2.11.3 Asynchronous Input Signal Timing Specifications

Table 19. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
E9	CRS, COL minimum pulse width	1.5	—	TXCLK period

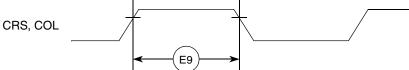


Figure 9. MII Async Inputs Timing Diagram

2.11.4 MII Serial Management Timing Specifications

Table 20. MII Serial Management Channel Signal Timing

Num	Characteristic	Symbol	Min	Мах	Unit
E10	MDC cycle time	t _{MDC}	400	_	ns
E11	MDC pulse width		40	60	% t _{MDC}
E12	MDC to MDIO output valid			375	ns
E13	MDC to MDIO output invalid		25	_	ns
E14	MDIO input to MDC setup		10	_	ns
E15	MDIO input to MDC hold		0	_	ns

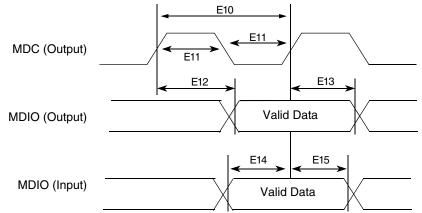
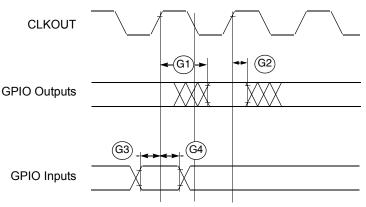


Figure 10. MII Serial Management Channel TIming Diagram

2.12 General Purpose I/O Timing

GPIO can be configured for certain pins of the QSPI, DDR Control, timer, UART, Interrupt and USB interfaces. When in GPIO mode, the timing specification for these pins is given in Table 21 and Figure 11.


The GPIO timing is met under the following load test conditions:

• 50 pF / 50 Ω for high drive

• $25 \text{ pF} / 25 \Omega$ for low drive

NUM	Characteristic	Symbol	Min	Мах	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	—	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	_	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	—	ns

Table 21. GPIO Timing

Figure 11. GPIO Timing

2.13 Reset Timing

Table 22. Reset and Configuration Override Timing

 $(V_{DD}$ = 3.0 to 3.6 V, V_{SS} = 0 V, T_{A} = T_{L} to $T_{H})^{1}$

NUM	Characteristic	Symbol	Min	Мах	Unit
R1	RSTI input valid to CLKOUT High	t _{RVCH}	9	—	ns
R2	CLKOUT High to RSTI Input invalid	t _{CHRI}	1.5	_	ns
R3	RSTI input valid time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTO Valid	t _{CHROV}	_	10	ns

 $^1\,$ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Thus, RSTI must be held a minimum of 100 ns.

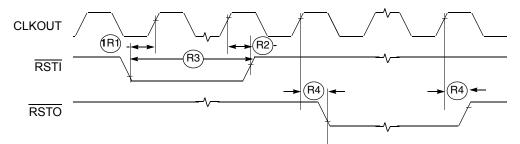


Figure 12. RSTI and Configuration Override Timing

2.14 I2C Input/Output Timing Specifications

Table 23 lists specifications for the I2C input timing parameters shown in Figure 13.

Table 23. I2C Input Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Units
11	Start condition hold time	$2 \times t_{CYC}$	_	ns
12	Clock low period	$8 \times t_{CYC}$	_	ns
13	SCL/SDA rise time ($V_{IL} = 0.5 \text{ V}$ to $V_{IH} = 2.4 \text{ V}$)	_	1	ms
14	Data hold time	0	-	ns
15	SCL/SDA fall time ($V_{IH} = 2.4$ V to $V_{IL} = 0.5$ V)	_	1	ms
16	Clock high time	$4 \times t_{CYC}$	-	ns
17	Data setup time	0	-	ns
18	Start condition setup time (for repeated start condition only)	$2 \times t_{CYC}$	—	ns
19	Stop condition setup time	$2 \times t_{CYC}$	—	ns

Table 24 lists specifications for the I2C output timing parameters shown in Figure 13.

Table 24. I2C Output Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	$6 \times t_{CYC}$	_	ns
12 ¹	Clock low period	$10 \times t_{CYC}$	_	ns
13 ²	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 V$ to $V_{IH} = 2.4 V$)	—	—	μs
14 ¹	Data hold time	$7 \times t_{CYC}$	_	ns
15 ³	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)	—	3	ns
16 ¹	Clock high time	$10 imes t_{CYC}$	—	ns
17 ¹	Data setup time	$2 \times t_{CYC}$	—	ns
18 ¹	Start condition setup time (for repeated start condition only)	$20 \times t_{CYC}$	—	ns
19 ¹	Stop condition setup time	$10 \times t_{CYC}$	—	ns

¹ Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 24. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 24 are minimum values.

² Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50 pF load.

Name	Characteristic	Min	Typical	Max	Unit
SNR	Signal-to-noise ratio	_	62 to 66	_	dB
THD	Total harmonic distortion	_	-75	_	dB
SFDR	Spurious free dynamic range	_	67 to 70.3	_	dB
SINAD	Signal-to-noise plus distortion	_	61 to 63.9	_	dB
ENOB	Effective number of bits	9.1	10.6		Bits

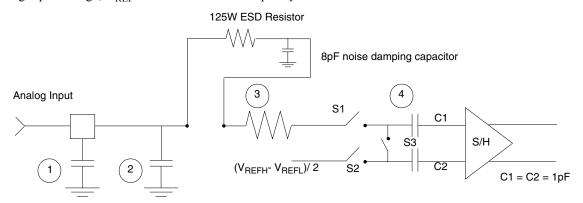
 Table 25. ADC Parameters¹ (continued)

¹ All measurements are preliminary pending full characterization, and made at V_{DD} = 3.3 V, V_{REFH} = 3.3 V, and V_{REFL} = ground

 $^2\,$ INL measured from V_{IN} = V_{REFL} to V_{IN} = V_{REFH}

³ LSB = Least Significant Bit

 $^4~$ INL measured from V_{IN} = 0.1 V_{REFH} to V_{IN} = 0.9 V_{REFH}


 5 Includes power-up of ADC and V_{REF}

⁶ ADC clock cycles

⁷ Current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC

2.16 Equivalent Circuit for ADC Inputs

Figure 14 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed and S3 is open, one input of the sample and hold circuit moves to $(V_{REFH}-V_{REFL})/2$, while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about $(V_{REFH}-V_{REFL})/2$. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). There are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase. One aspect of this circuit is that there is an on-going input current, which is a function of the analog input voltage, V_{REF} and the ADC clock frequency.

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8 pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04 pF
- 3. Equivalent resistance for the channel select mux; 100Ω
- 4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1.4 pF
- 5. Equivalent input impedance, when the input is selected = 1

(ADC Clock Rate) \times (1.4 \times 10⁻¹²)

Figure 14. Equivalent Circuit for A/D Loading

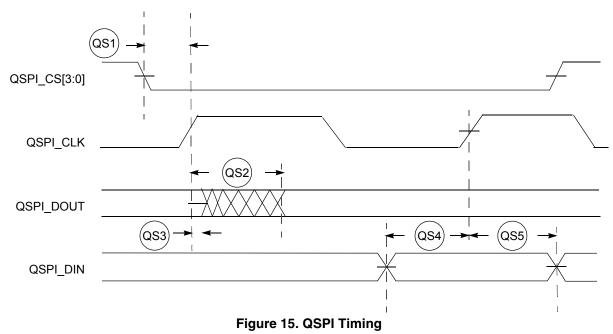
MCF52259 ColdFire Microcontroller, Rev. 5

2.17 DMA Timers Timing Specifications

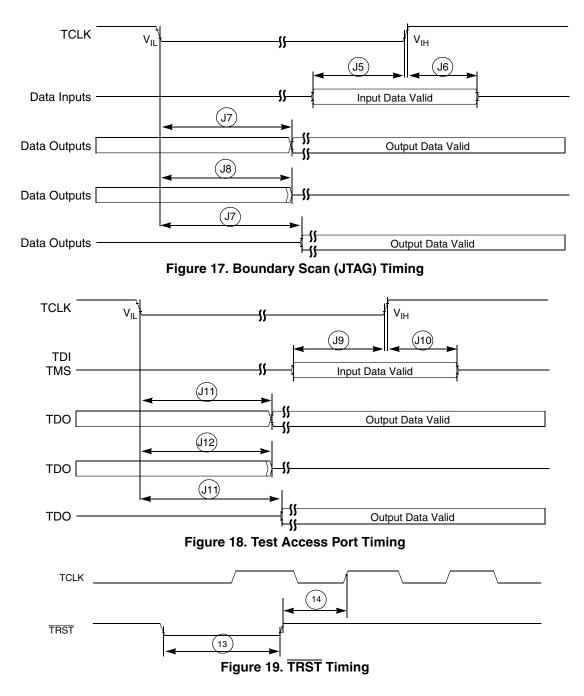
Table 26 lists timer module AC timings.

Table 26. Timer Module AC Timing Specifications

Name	Characteristic ¹	Min	Max	Unit
T1	DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time	$3 \times t_{CYC}$	_	ns
T2	DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width	$1 \times t_{CYC}$		ns


¹ All timing references to CLKOUT are given to its rising edge.

2.18 **QSPI Electrical Specifications**


Table 27 lists QSPI timings.

Name	Characteristic	Min	Мах	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	t _{CYC}
QS2	QSPI_CLK high to QSPI_DOUT valid	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid (Output hold)	2		ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	_	ns

The values in Table 27 correspond to Figure 15.

2.19 JTAG and Boundary Scan Timing

2.20 Debug AC Timing Specifications

Table 29 lists specifications for the debug AC timing parameters shown in Figure 21.

Num	Characteristic	66/80	Units	
		Min	Мах	Units
D1	PST, DDATA to CLKOUT setup	4	_	ns
D2	CLKOUT to PST, DDATA hold	1.5	_	ns
D3	DSI-to-DSCLK setup	$1 \times t_{CYC}$		ns
D4 ¹	DSCLK-to-DSO hold	$4 \times t_{CYC}$	_	ns
D5	DSCLK cycle time	$5 imes t_{CYC}$		ns
D6	BKPT input data setup time to CLKOUT rise	4	_	ns
D7	BKPT input data hold time to CLKOUT rise	1.5	_	ns
D8	CLKOUT high to BKPT high Z	0.0	10.0	ns

Table 29. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 20 shows real-time trace timing for the values in Table 29.

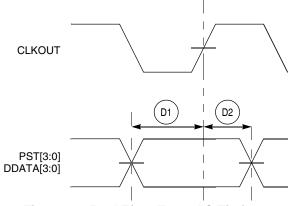


Figure 20. Real-Time Trace AC Timing