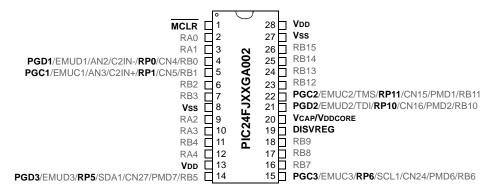


Welcome to **E-XFL.COM**

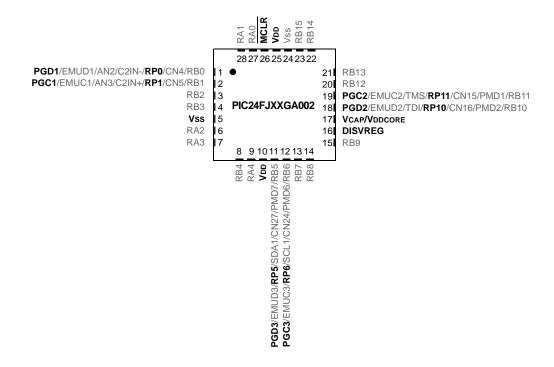
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

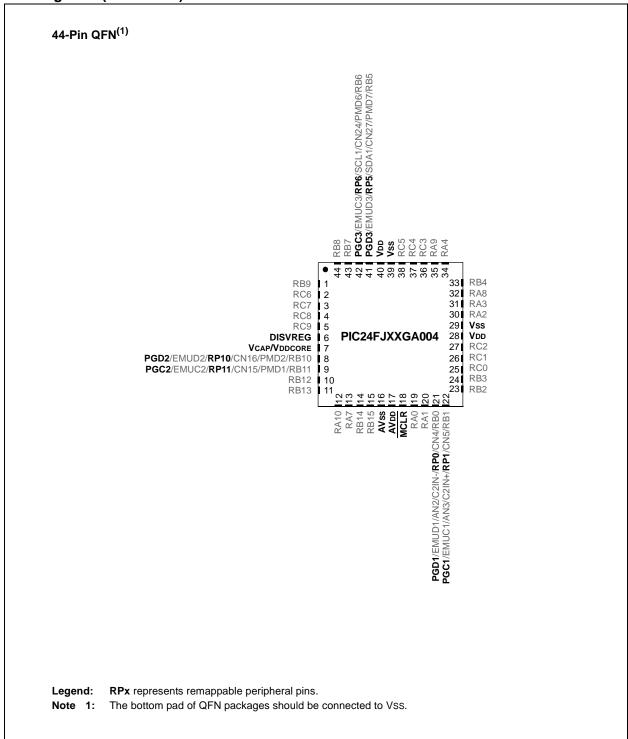

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga006-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

28-Pin PDIP, SSOP, SOIC


28-Pin QFN⁽¹⁾

Legend: RPx represents remappable peripheral pins.

Note 1: The bottom pad of QFN packages should be connected to Vss.

Pin Diagrams (Continued)

2.4 Memory Map

The program memory map extends from 000000h to FFFFFEh. Code storage is located at the base of the memory map and supports up to 44K instruction words (about 128 Kbytes). Table 2-3 shows the program memory size and number of erase and program blocks present in each device variant. Each erase block, or page, contains 512 instructions, and each program block, or row, contains 64 instructions.

Locations 800000h through 8007FEh are reserved for executive code memory. This region stores the programming executive and the debugging executive. The programming executive is used for device programming and the debugging executive is used for in-circuit debugging. This region of memory can not be used to store user code.

The last two implemented program memory locations are reserved for the device Configuration registers.

TABLE 2-2: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJXXXGA0XX DEVICES

Device	_	tion Word esses
	1	2
PIC24FJ16GA	002BFEh	002BFCh
PIC24FJ32GA	0057FEh	0057FCh
PIC24FJ48GA	0083FEh	0083FCh
PIC24FJ64GA	00ABFEh	00ABFCh
PIC24FJ96GA	00FFFEh	00FFFCh
PIC24FJ128GAGA	0157FEh	0157FCh

Locations, FF0000h and FF0002h, are reserved for the Device ID registers. These bits can be used by the programmer to identify what device type is being programmed. They are described in **Section 6.1** "**Device ID**". The Device ID registers read out normally, even after code protection is applied.

Figure 2-4 shows the memory map for the PIC24FJXXXGA0XX family variants.

TABLE 2-3: CODE MEMORY SIZE

Device	User Memory Address Limit (Instruction Words)	Write Blocks	Erase Blocks
PIC24FJ16GA	002BFEh (5.5K)	88	11
PIC24FJ32GA	0057FEh (11K)	176	22
PIC24FJ48GA	0083FEh (16.5K)	264	33
PIC24FJ64GA	00ABFEh (22K)	344	43
PIC24FJ96GA	00FFFEh (32K)	512	64
PIC24FJ128GA	0157FEh (44K)	688	86

3.6 Writing Code Memory

The procedure for writing code memory is the same as the procedure for writing the Configuration registers, except that 64 instruction words are programmed at a time. To facilitate this operation, working registers, W0:W5, are used as temporary holding registers for the data to be programmed.

Table 3-5 shows the ICSP programming details, including the serial pattern with the ICSP command code which must be transmitted, Least Significant bit first, using the PGCx and PGDx pins (see Figure 3-2).

In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for programming a full row of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. (The upper byte of the starting destination address is stored in TBLPAG and the lower 16 bits of the destination address are stored in W7.)

To minimize the programming time, A packed instruction format is used (Figure 3-6).

In Step 4, four packed instruction words are stored in working registers, W0:W5, using the MOV instruction, and the Read Pointer, W6, is initialized. The contents of W0:W5 (holding the packed instruction word data) are shown in Figure 3-6.

In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since code memory is programmed 64 instruction words at a time, Steps 4 and 5 are repeated 16 times to load all the write latches (Step 6).

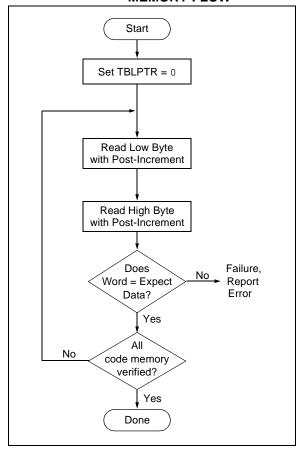
After the write latches are loaded, programming is initiated by writing to the NVMCON register in Steps 7 and 8. In Step 9, the internal PC is reset to 200h. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 3-9 are repeated until all of code memory is programmed.

FIGURE 3-6: PACKED INSTRUCTION WORDS IN W<0:5>

	15		8	7		0
Wo			LS\			
W1		MSB1			MSB0	
W2			LS\	V1		
W3			LS\	V2		
W4		MSB3			MSB2	
W5			LS\	V3		

TABLE 3-5: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY

IADLE 3-3.	OLIVIA II VOII	STRUCTION EXECUTION OF WINTING CODE MEMORY		
Command (Binary)	Data (Hex)	Description		
Step 1: Exi	t the Reset vector.			
0000	000000	NOP		
0000	040200	GOTO	0x200	
0000	000000	NOP		
Step 2: Set	the NVMCON to pr	ogram 64	4 instruction words.	
0000	24001A	MOV	#0x4001, W10	
0000	883B0A	MOV	W10, NVMCON	
Step 3: Initi	alize the Write Point	er (W7)	for TBLWT instruction.	
0000	200xx0	MOV	<pre>#<destinationaddress23:16>, W0</destinationaddress23:16></pre>	
0000	880190	MOV	WO, TBLPAG	
0000	2xxxx7	MOV	<pre>#<destinationaddress15:0>, W7</destinationaddress15:0></pre>	
Step 4: Loa	ad W0:W5 with the n	ext 4 ins	truction words to program.	
0000	2xxxx0	MOV	# <lsw0>, W0</lsw0>	
0000	2xxxx1	MOV	# <msb1:msb0>, W1</msb1:msb0>	
0000	2xxxx2	MOV	# <lsw1>, W2</lsw1>	
0000	2xxxx3	MOV	# <lsw2>, W3</lsw2>	
0000	2xxxx4	MOV	# <msb3:msb2>, W4</msb3:msb2>	
0000	2xxxx5	MOV	# <lsw3>, W5</lsw3>	


3.10 Verify Code Memory and Configuration Word

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. The Configuration registers are verified with the rest of the code.

The verify process is shown in the flowchart in Figure 3-8. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to **Section 3.8** "**Reading Code Memory**" for implementation details of reading code memory.

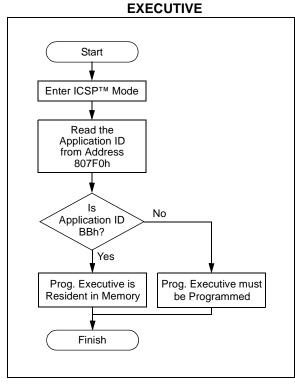
Note: Because the Configuration registers include the device code protection bit, code memory should be verified immediately after writing if code protection is enabled. This is because the device will not be readable or verifiable if a device Reset occurs after the code-protect bit in CW1 has been cleared.

FIGURE 3-8: VERIFY CODE MEMORY FLOW

3.11 Reading the Application ID Word

The Application ID Word is stored at address 8005BEh in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. Then, the REGOUT control code must be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 3-10.

After the programmer has clocked out the Application ID Word, it must be inspected. If the Application ID has the value, BBh, the programming executive is resident in memory and the device can be programmed using the mechanism described in **Section 4.0 "Device Programming – Enhanced ICSP"**. However, if the Application ID has any other value, the programming executive is not resident in memory; it must be loaded to memory before the device can be programmed. The procedure for loading the programming executive to memory is described in **Section 5.4 "Programming the Programming Executive to Memory"**.


3.12 Exiting ICSP Mode

Exiting Program/Verify mode is done by removing VIH from MCLR, as shown in Figure 3-9. The only requirement for exit is that an interval, P16, should elapse between the last clock and program signals on PGCx and PGDx before removing VIH.

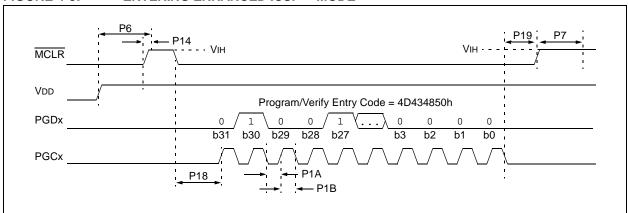
FIGURE 3-9: EXITING ICSP™ MODE

FIGURE 4-2: CONFIRMING PRESENCE OF PROGRAMMING

4.3 Entering Enhanced ICSP Mode

As shown in Figure 4-3, entering Enhanced ICSP Program/Verify mode requires three steps:

- 1. The $\overline{\text{MCLR}}$ pin is briefly driven high, then low.
- 2. A 32-bit key sequence is clocked into PGDx.
- 3. MCLR is then driven high within a specified period of time and held.


The programming voltage applied to MCLR is VIH, which is essentially VDD in the case of PIC24FJXXXGA0XX devices. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P18 must elapse before presenting the key sequence on PGDx.

The key sequence is a specific 32-bit pattern: '0100 1101 0100 0011 0100 1000 0101 0000' (more easily remembered as 4D434850h in hexadecimal format). The device will enter Program/Verify mode only if the key sequence is valid. The Most Significant bit (MSb) of the most significant nibble must be shifted in first.

Once the key sequence is complete, VIH must be applied to MCLR and held at that level for as long as Program/Verify mode is to be maintained. An interval of at least time P19 and P7 must elapse before presenting data on PGDx. Signals appearing on PGDx before P7 has elapsed will not be interpreted as valid.

On successful entry, the program memory can be accessed and programmed in serial fashion. While in the Program/Verify mode, all unused I/Os are placed in the high-impedance state.

FIGURE 4-3: ENTERING ENHANCED ICSP™ MODE

4.5.2 PROGRAMMING VERIFICATION

After code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer's buffer.

The READP command can be used to read back all of the programmed code memory.

Alternatively, you can have the programmer perform the verification after the entire device is programmed using a checksum computation.

4.6 Configuration Bits Programming

4.6.1 OVERVIEW

The PIC24FJXXXGA0XX family has Configuration bits stored in the last two locations of implemented program memory (see Table 2-2 for locations). These bits can be set or cleared to select various device configurations. There are three types of Configuration bits: system operation bits, code-protect bits and unit ID bits. The system operation bits determine the power-on settings for system level components, such as oscillator and Watchdog Timer. The code-protect bits prevent program memory from being read and written.

The register descriptions for the CW1 and CW2 Configuration registers are shown in Table 4-2.

TABLE 4-2: PIC24FJXXXGA0XX FAMILY CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
I2C1SEL ⁽¹⁾	CW2<2>	I2C1 Pin Mapping bit 1 = Default location for SCL1/SDA1 pins 0 = Alternate location for SCL1/SDA1 pins
DEBUG	CW1<11>	Background Debug Enable bit 1 = Device will reset in User mode 0 = Device will reset in Debug mode
FCKSM1:FCKSM0	CW2<7:6>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FNOSC2:FNOSC0	CW2<10:8>	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRCDIV) oscillator with postscaler 110 = Reserved 101 = Low-Power RC (LPRC) oscillator 100 = Secondary (SOSC) oscillator 011 = Primary (XTPLL, HSPLL, ECPLL) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRCPLL) oscillator with postscaler and PLL 000 = Fast RC (FRC) oscillator
FWDTEN	CW1<7>	Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
GCP	CW1<13>	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = User program memory is code-protected
GWRP	CW1<12>	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
ICS	CW1<8>	ICD Communication Channel Select bit 1 = Communicate on PGC2/EMUC2 and PGD2/EMUD2 0 = Communicate on PGC1/EMUC1 and PGD1/EMUD1

Note 1: Available on 28 and 44-pin packages only.

2: Available only on 28 and 44-pin devices with a silicon revision of 3042h or higher.

TABLE 4-2: PIC24FJXXXGA0XX FAMILY CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description	
ICS ⁽¹⁾	CW1<8>	ICD Pin Placement Select bit 11 = ICD EMUC/EMUD pins are shared with PGC1/PGD1 10 = ICD EMUC/EMUD pins are shared with PGC2/PGD2 01 = ICD EMUC/EMUD pins are shared with PGC3/PGD3 00 = Reserved; do not use	
IESO	CW2<15>	Internal External Switchover bit 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled	
IOL1WAY ⁽¹⁾	CW2<4>	IOLOCK Bit One-Way Set Enable bit 0 = The OSCCON <iolock> bit can be set and cleared as needed (provide an unlocking sequence is executed) 1 = The OSCCON<iolock> bit can only be set once (provided an unlockin sequence is executed). Once IOLOCK is set, this prevents any possible future RP register changes</iolock></iolock>	
JTAGEN	CW1<14>	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled	
OSCIOFNC	CW2<5>	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin	
SOSCSEL1: SOSCSEL0 ⁽²⁾	CW2<12:11>	Secondary Oscillator Power Mode Select bits 11 = Default (high drive strength) mode 01 = Low-Power (low drive strength) mode x0 = Reserved; do not use	
POSCMD1: POSCMD0	CW2<1:0>	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode	
WDTPOST3: WDTPOST0	CW1<3:0>	Watchdog Timer Prescaler bit 1111 = 1:32,768 1110 = 1:16,384	
WDTPRE	CW1<4>	Watchdog Timer Postscaler bit 1 = 1:128 0 = 1:32	
WINDIS	CW1<6>	Windowed WDT bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode; FWDTEN must be '1'	
WUTSEL1: WUTSEL0 ⁽²⁾	CW2<14:13>	Voltage Regulator Standby Mode Wake-up Time Select bits 11 = Default regulator wake time used 01 = Fast regulator wake time used x0 = Reserved; do not use	

Note 1: Available on 28 and 44-pin packages only.

2: Available only on 28 and 44-pin devices with a silicon revision of 3042h or higher.

4.6.2 PROGRAMMING METHODOLOGY

Configuration bits may be programmed a single byte at a time using the PROGW command. This command specifies the configuration data and Configuration register address. When Configuration bits are programmed, any unimplemented or reserved bits must be programmed with a '1'.

Two PROGW commands are required to program the Configuration bits. A flowchart for Configuration bit programming is shown in Figure 4-5.

Note:

If the General Segment Code-Protect bit (GCP) is programmed to '0', code memory is code-protected and can not be read. Code memory must be verified before enabling read protection. See Section 4.6.4 "Code-Protect Configuration Bits" for more information about code-protect Configuration bits.

4.6.3 PROGRAMMING VERIFICATION

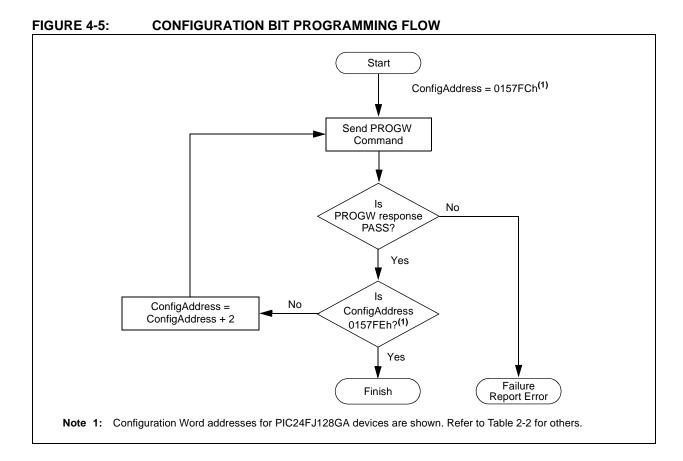
After the Configuration bits are programmed, the contents of memory should be verified to ensure that the programming was successful. Verification requires the Configuration bits to be read back and compared against the copy held in the programmer's buffer. The READP command reads back the programmed Configuration bits and verifies that the programming was successful.

4.6.4 CODE-PROTECT CONFIGURATION BITS

CW1 Configuration register controls code protection for the PIC24FJXXXGA0XX family. Two forms of code protection are provided. One form prevents code memory from being written (write protection) and the other prevents code memory from being read (read protection).

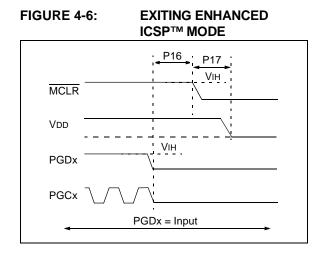
GWRP (CW1<12>) controls write protection and GCP (CW1<13>) controls read protection. Protection is enabled when the respective bit is '0'.

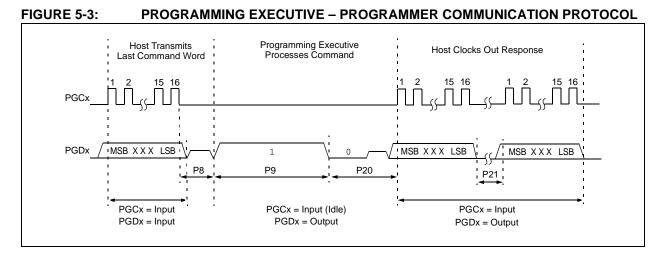
Erasing sets GWRP and GCP to '1', which allows the device to be programmed.


When write protection is enabled (GWRP = 0), any programming operation to code memory will fail.

When read protection is enabled (GCP = 0), any read from code memory will cause a 0h to be read, regardless of the actual contents of code memory. Since the programming executive always verifies what it programs, attempting to program code memory with read protection enabled also will result in failure.

It is imperative that both GWRP and GCP are '1' while the device is being programmed and verified. Only after the device is programmed and verified should either GWRP or GCP be programmed to '0' (see **Section 4.6** "Configuration Bits Programming").


Note:


Bulk Erasing in ICSP mode is the only way to reprogram code-protect bits from an ON state ('0') to an Off state ('1').

4.7 Exiting Enhanced ICSP Mode

Exiting Program/Verify mode is done by removing VIH from MCLR, as shown in Figure 4-6. The only requirement for exit is that an interval, P16, should elapse between the last clock and program signals on PGCx and PGDx before removing VIH.

5.2 Programming Executive Commands

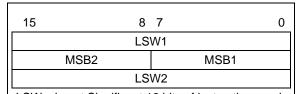
The programming executive command set is shown in Table 5-1. This table contains the opcode, mnemonic, length, time-out and description for each command. Functional details on each command are provided in **Section 5.2.4 "Command Descriptions"**.

5.2.1 COMMAND FORMAT

All programming executive commands have a general format consisting of a 16-bit header and any required data for the command (see Figure 5-4). The 16-bit header consists of a 4-bit opcode field, which is used to identify the command, followed by a 12-bit command length field.

FIGURE 5-4: COMMAND FORMAT

15 12	11	0		
Opcode	Length			
Comm	Command Data First Word (if required)			
•				
•				
Command Data Last Word (if required)				


The command opcode must match one of those in the command set. Any command that is received which does not match the list in Table 5-1 will return a "NACK" response (see **Section 5.3.1.1 "Opcode Field"**).

The command length is represented in 16-bit words since the SPI operates in 16-bit mode. The programming executive uses the command length field to determine the number of words to read from the SPI port. If the value of this field is incorrect, the command will not be properly received by the programming executive.

5.2.2 PACKED DATA FORMAT

When 24-bit instruction words are transferred across the 16-bit SPI interface, they are packed to conserve space using the format shown in Figure 5-5. This format minimizes traffic over the SPI and provides the programming executive with data that is properly aligned for performing table write operations.

FIGURE 5-5: PACKED INSTRUCTION WORD FORMAT

LSWx: Least Significant 16 bits of instruction word MSBx: Most Significant Bytes of instruction word

Note: When the number of instruction words transferred is odd, MSB2 is zero and LSW2 can not be transmitted.

5.2.3 PROGRAMMING EXECUTIVE ERROR HANDLING

The programming executive will "NACK" all unsupported commands. Additionally, due to the memory constraints of the programming executive, no checking is performed on the data contained in the programmer command. It is the responsibility of the programmer to command the programming executive with valid command arguments or the programming operation may fail. Additional information on error handling is provided in **Section 5.3.1.3** "QE_Code Field".

5.2.8 PROGC COMMAND

15	12	11 8 7		0		
Opcode				Le	ngth	
Reserved				Addr_MSB		
	Addr_LS					
	Data					

Field	Description		
Opcode	4h		
Length	4h		
Reserved	0h		
Addr_MSB	MSB of 24-bit destination address		
Addr_LS	Least Significant 16 bits of 24-bit destination address		
Data	8-bit data word		

The PROGC command instructs the programming executive to program a single Device ID register located at the specified memory address.

After the specified data word has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

1400h 0002h

5.2.9 PROGP COMMAND

D_96

Field	Description	
Opcode	5h	
Length	63h	
Reserved	0h	
Addr_MSB	MSB of 24-bit destination address	
Addr_LS	Least Significant 16 bits of 24-bit destination address	
D_1	16-bit data word 1	
D_2	16-bit data word 2	
•••	16-bit data word 3 through 95	
D_96	16-bit data word 96	

The PROGP command instructs the programming executive to program one row of code memory, including Configuration Words (64 instruction words), to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 80h.

The data to program to memory, located in command words, D_1 through D_96, must be arranged using the packed instruction word format shown in Figure 5-5.

After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

1500h 0002h

Note: Refer to Table 2-3 for code memory size information.

5.4 Programming the Programming Executive to Memory

5.4.1 OVERVIEW

If it is determined that the programming executive is not present in executive memory (as described in Section 4.2 "Confirming the Presence of the Programming Executive"), it must be programmed into executive memory using ICSP, as described in Section 3.0 "Device Programming – ICSP".

Storing the programming executive to executive memory is similar to normal programming of code memory. Namely, the executive memory must be erased, and then the programming executive must be programmed 64 words at a time. Erasing the last page of executive memory will cause the FRC oscillator calibration settings and device diagnostic data in the Diagnostic and Calibration Words, at addresses 8007F0h to 8007FEh, to be erased. In order to retain this calibration, these memory locations should be read and stored prior to erasing executive memory. They should then be reprogrammed in the last words of program memory. This control flow is summarized in Table 5-5.

TABLE 5-5: PROGRAMMING THE PROGRAMMING EXECUTIVE

IABLE 3-3.	ABLE 5-5: PROGRAMMING THE PROGRAMMING EXECUTIVE		
Command (Binary)	Data (Hex)		Description
Step 1: Exit	Reset vector and e	rase executive	e memory.
0000	000000	NOP	
0000	040200	GOTO	0x200
0000	000000	NOP	
Step 2: Initia	alize pointers to rea	d Diagnostic a	and Calibration Words for storage in W6-W13.
0000	200800	MOV	#0x80, W0
0000	880190	MOV	WO, TBLPAG
0000	207F00	MOV	#0x07F0, W1
0000	2000C2	MOV	#0xC, W2
0000	000000	NOP	
Step 3: Rep	eat this step 8 times	s to read Diag	nostic and Calibration Words, storing them in W registers, W6-W13.
0000	BA1931	TBLRDL	[W1++].[W2++]
0000	000000	NOP	
0000	000000	NOP	
Step 4: Initia	alize the NVMCON	to erase exec	utive memory.
0000	240420	MOV	#0x4042, W0
0000	883B00	MOV	WO, NVMCON
Step 5: Initia	alize Erase Pointers	to first page of	of executive and then initiate the erase cycle.
0000	200800	MOV	#0x80, W0
0000	880190	MOV	WO, TBLPAG
0000	200001	MOV	#0x0, W1
0000	000000	NOP	
0000	BB0881	TBLWTL	W1, [W1]
0000	000000	NOP	
0000	000000	NOP	
0000	A8E761	BSET	NVMCON, #15
00000	000000	NOP	
0000	000000	NOP	
Stop 6: Don	oot this stan to noll	the MP hit (hi	t 15 of NV/MCON) until it is algored by the hardware
		`	it 15 of NVMCON) until it is cleared by the hardware.
0000	040200	GOTO	0x200
0000	000000	NOP	NUMCON 110
0000	803B02	MOV	NVMCON, W2
0000	883C22	MOV	W2, VISI
0001	000000	NOP	and only of the MICI wenighted
0000	<visi> 000000</visi>	NOP	contents of the VISI register.
0000	00000	1101	

Command Data (Binary) (Hex)		Description			
		o erase the second page of executive memory. The W1 Pointer should be point to the second page.			
		IVMCON to write stored diagnostic and calibration as single words. Initialize W1			
		ead Pointers to rewrite stored Diagnostic and Calibration Words.			
0000	200800	MOV #0x80, W0			
0000 0000	880190	MOV W0, TBLPAG MOV #0x4003, W1			
0000	240031 883B01	MOV #0x4003, W1 MOV W1, NVMCON			
0000	207F00	MOV #0x07F0, W1			
0000	207F00 2000C2	MOV #0xC, W2			
0000	000000	NOP			
		e word of calibration data and initiate single-word write cycle.			
0000	BB18B2	TBLWTL [W2++], [W1++]			
0000	000000	NOP			
0000	000000	NOP			
0000	A8E761	BSET NVMCON, #15			
0000 0000	000000	NOP NOD			
		NOP			
		the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.			
0000	040200	GOTO 0x200			
0000	000000	NOP			
0000	803B00	MOV NVMCON, W0			
0000	883C20	MOV W0, VISI			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register.			
0000	000000	NOP			
	eat steps 9-10 seve k into program mem	en more times to program the remainder of the Diagnostic and Calibration Words			
		to program 64 instruction words.			
0000	240010	MOV #0x4001, W0			
0000	883B00	MOV W0, NVMCON			
Step 13: Initia	alize TBLPAG and th	he Write Pointer (W7).			
0000	200800	MOV #0x80, W0			
0000	880190	MOV W0, TBLPAG			
0000	EB0380	CLR W7			
0000	000000	NOP			
Step 14: Loa	d W0:W5 with the no	ext four words of packed programming executive code and initialize W6 for			
5.50	gramming. Programr nter and W7 as a Wr	ming starts from the base of executive memory (800000h) using W6 as a Read			
Poir		MOSZ # <i cwo=""> WO</i>			
Poir 0000	2 <lsw0>0</lsw0>	MOV # <lsw0>, W0</lsw0>			
9000 0000	2 <lsw0>0 2<msb1:msb0>1</msb1:msb0></lsw0>	MOV # <msb1:msb0>, W1</msb1:msb0>			
9000 0000 0000	2 <lsw0>0 2<msb1:msb0>1 2<lsw1>2</lsw1></msb1:msb0></lsw0>	MOV # <msb1:msb0>, W1 MOV #<lsw1>, W2</lsw1></msb1:msb0>			
9000 0000	2 <lsw0>0 2<msb1:msb0>1</msb1:msb0></lsw0>	MOV # <msb1:msb0>, W1</msb1:msb0>			

TABLE 5-5: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)

Command (Binary)	Data (Hex)	Description
Step 15: Set t	the Read Pointer	(W6) and load the (next four write) latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B[W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B[W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B[W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B[W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
Step 16: Rep	eat Steps 14-15,	sixteen times, to load the write latches for the 64 instructions.
Step 17: Initia	ate the programm	ing cycle.
0000	A8E761	BSET NVMCON, #15
0000	000000	NOP
0000	000000	NOP
Step 18: Rep	eat this step to po	oll the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.
0000	040200	GOTO 0x200
0000	000000	NOP
0000	803B02	MOV NVMCON, W2
0000	883C22	MOV W2, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of the VISI register.
0000	000000	NOP
Step 19: Rese	et the device inter	nal PC.
0000	040200	GOTO 0x200
0000	000000	NOP
•	•	ntil all 16 rows of executive memory have been programmed. On the final row, make

Step 20: Repeat Steps 14-19 until all 16 rows of executive memory have been programmed. On the final row, make sure to initialize the write latches at the Diagnostic and Calibration Words locations with 0xFFFFFF to ensure that the calibration is not overwritten.

5.4.2 PROGRAMMING VERIFICATION

After the programming executive has been programmed to executive memory using ICSP, it must be verified. Verification is performed by reading out the contents of executive memory and comparing it with the image of the programming executive stored in the programmer.

Reading the contents of executive memory can be performed using the same technique described in **Section 3.8** "**Reading Code Memory**". A procedure for reading executive memory is shown in Table 5-6. Note that in Step 2, the TBLPAG register is set to 80h, such that executive memory may be read. The last eight words of executive memory should be verified with stored values of the Diagnostic and Calibration Words to ensure accuracy.

TABLE 5-6: READING EXECUTIVE MEMORY

IABLE 5-6:	KEADING	EXECUTIVE MEMORY			
Command (Binary)	Data (Hex)	Description			
Step 1: Exit the Reset vector.					
0000	000000	NOP			
0000	040200	GOTO 0x200			
0000	000000	NOP			
Step 2: Initia	lize TBLPAG a	nd the Read Pointer (W6) for TBLRD instruction.			
0000	200800	MOV #0x80, W0			
0000	880190	MOV W0, TBLPAG			
0000	EB0300	CLR W6			
Step 3: Initia	lize the Write P	ointer (W7) to point to the VISI register.			
0000	207847	MOV #VISI, W7			
0000	000000	NOP			
	d and clock out g the REGOUT	the contents of the next two locations of executive memory through the VISI register command.			
0000	BA0B96	TBLRDL [W6], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
0000	BADBB6	TBLRDH.B[W6++], [W7++]			
0000	000000	NOP			
0000	000000	NOP			
0000	BAD3D6	TBLRDH.B[++W6], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
0000	BA0BB6	TBLRDL [W6++], [W7]			
0000	000000	NOP			
0000	000000	NOP			
0001	<visi></visi>	Clock out contents of VISI register			
0000	000000	NOP			
Step 5: Rese	et the device int	ernal PC.			
0000	040200	GOTO 0x200			
0000	000000	NOP			
Step 6: Repe	eat Steps 4 and	5 until all desired code memory is read.			

6.2 Checksum Computation

Checksums for the PIC24FJXXXGA0XX family are 16 bits in size. The checksum is calculated by summing the following:

- · Contents of code memory locations
- · Contents of Configuration registers

Table 6-4 describes how to calculate the checksum for each device. All memory locations are summed, one byte at a time, using only their native data size. More specifically, Configuration registers are summed by adding the lower two bytes of these locations (the upper byte is ignored), while code memory is summed by adding all three bytes of code memory.

TABLE 6-4: CHECKSUM COMPUTATION

Device	Read Code Protection	Checksum Computation	Erased Checksum Value	Checksum with 0xAAAAAA at 0x0 and Last Code Address
DIO045 1400 4000	Disabled	CFGB + SUM(0:02BFB)	0xBB5A	0xB95C
PIC24FJ16GA002	Enabled	0	0x0000	0x0000
DIC 24E 146C 4004	Disabled	CFGB + SUM(0:02BFB)	0xBB5A	0xB95C
PIC24FJ16GA004	Enabled	0	0x0000	0x0000
DIC 24E 122C A 002	Disabled	CFGB + SUM(0:057FB)	0x795A	0x775C
PIC24FJ32GA002	Enabled	0	0x0000	0x0000
DIC 24E 122C A004	Disabled	CFGB + SUM(0:057FB)	0x795A	0x775C
PIC24FJ32GA004	Enabled	0	0x0000	0x0000
DICO4E 140C 4000	Disabled	CFGB + SUM(0:083FB)	0x375A	0x355C
PIC24FJ48GA002	Enabled	0	0x0000	0x0000
DICO4E 140C 4004	Disabled	CFGB + SUM(0:083FB)	0x375A	0x355C
PIC24FJ48GA004	Enabled	0	0x0000	0x0000
DICOAE ICAC A000	Disabled	CFGB + SUM(0:0ABFB)	0xFB5A	0xF95C
PIC24FJ64GA002	Enabled	0	0x0000	0x0000
DICOAE IGAC AGGA	Disabled	CFGB + SUM(0:0ABFB)	0xFB5A	0xF95C
PIC24FJ64GA004	Enabled	0	0x0000	0x0000
DIO045 1040 4000	Disabled	CFGB + SUM(0:0ABFB)	0xFACC	0xF8CE
PIC24FJ64GA006	Enabled	0	0x0000	0x0000
DICO 45 10 40 4000	Disabled	CFGB + SUM(0:0ABFB)	0xFACC	0xF8CE
PIC24FJ64GA008	Enabled	0	0x0000	0x0000
DICOAE ICACAGAG	Disabled	CFGB + SUM(0:0ABFB)	0xFACC	0xF8CE
PIC24FJ64GA010	Enabled	0	0x0000	0x0000
DIO045 1000 1000	Disabled	CFGB + SUM(0:0FFFB)	0x7CCC	0x7ACE
PIC24FJ96GA006	Enabled	0	0x0000	0x0000
DIC24E 1000 A000	Disabled	CFGB + SUM(0:0FFFB)	0x7CCC	0x7ACE
PIC24FJ96GA008	Enabled	0	0x0000	0x0000
DIC24E 1000 A040	Disabled	CFGB + SUM(0:0FFFB)	0x7CCC	0x7ACE
PIC24FJ96GA010	Enabled	0	0x0000	0x0000

Legend: <u>Item</u> <u>Description</u>

SUM[a:b] = Byte sum of locations, a to b inclusive (all 3 bytes of code memory)

CFGB = Configuration Block (masked),

64/80/100-Pin Devices = Byte sum of (CW1 & 0x7DDF + CW2 & 0x87E3) 28/44-Pin Devices = Byte sum of (CW1 & 0x7FDF + CW2 & 0xFFF7)

Note: CW1 address is last location of implemented program memory; CW2 is (last location – 2).

7.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

Standard Operating Conditions

Operating Temperature: 0°C to +70°C. Programming at +25°C is recommended.

Operating Temperature: 0°C to +70°C. Programming at +25°C is recommended.						
Symbol	Characteristic	Min	Max	Units	Conditions	
VDD	Supply Voltage During Programming	VDDCORE + 0.1	3.60	V	Normal programming ^(1,2)	
IPP	Programming Current on MCLR	_	5	μΑ		
IDDP	Supply Current During Programming	_	2	mA		
VIL	Input Low Voltage	Vss	0.2 VDD	V		
ViH	Input High Voltage	0.8 VDD	VDD	V		
Vol	Output Low Voltage	_	0.4	V	IOL = 8.5 mA @ 3.6V	
Vон	Output High Voltage	3.0	_	V	IOH = -3.0 mA @ 3.6V	
Сю	Capacitive Loading on I/O pin (PGDx)	_	50	pF	To meet AC specifications	
CF	Filter Capacitor Value on VCAP	4.7	10	μF	Required for controller core	
TPGC	Serial Clock (PGCx) Period	100	_	ns		
TPGCL	Serial Clock (PGCx) Low Time	40	_	ns		
TPGCH	Serial Clock (PGCx) High Time	40	_	ns		
TSET1	Input Data Setup Time to Serial Clock ↑	15	_	ns		
THLD1	Input Data Hold Time from PGCx ↑	15	_	ns		
TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns		
TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns		
TDLY2	Delay Between Last PGCx ↓ of Command Byte to First PGCx ↑ of Read of Data Word	20	_	ns		
TSET2	VDD ↑ Setup Time to MCLR ↑	100	_	ns		
THLD2	Input Data Hold Time from MCLR ↑	25	_	ms		
TDLY3	Delay Between Last PGCx ↓ of Command	12	_	μS		
TDLY4	Programming Executive Command	40	_	μS		
TDLY6	PGCx Low Time After Programming	400	_	ns		
TDLY7	Chip Erase Time	400	_	ms		
TDLY8	Page Erase Time	40	_	ms		
TDLY9	Row Programming Time	2	_	ms		
TR	MCLR Rise Time to Enter ICSP™ mode	_	1.0	μS		
TVALID	Data Out Valid from PGCx ↑	10	_	ns		
TDLY10	Delay Between Last PGCx ↓ and MCLR ↓	0	_	S		
THLD3		100	_	ns		
TKEY1	Delay from First MCLR ↓ to First PGCx ↑	40	_	ns		
TKEY2	Delay from Last PGCx ↓ for Key	1	_	ms		
TDLY11	Delay Between PGDx ↓ by Programming	23	_	μs		
TDLY12	Delay Between Programming Executive Command Response Words	8	_	ns		
	Symbol VDD IPP IDDP VIL VOL VOH CIO CF TPGC TPGCI TPGCH TSET1 THLD1 TDLY1 TDLY1 TDLY1 TDLY1 TDLY2 TSET2 THLD2 TDLY3 TDLY3 TDLY4 TDLY6 TDLY7 TDLY8 TDLY7 TDLY8 TDLY9 TR TVALID TR TVALID THLD3 TKEY1 TKEY2	Symbol Characteristic VDD Supply Voltage During Programming IPP Programming Current on MCLR IDDP Supply Current During Programming VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage VOH Output High Voltage CIO Capacitive Loading on I/O pin (PGDx) CF Filter Capacitor Value on VcAP TPGC Serial Clock (PGCx) Period TPGCL Serial Clock (PGCx) Low Time TPGCL Serial Clock (PGCx) High Time TSET1 Input Data Betup Time to Serial Clock ↑ THLD1 Input Data Hold Time from PGCx ↑ TDLY1 Delay Between 4-Bit Command and Command Aperand and Next 4-Bit Command Operand and Next 4-Bit Command Derand and Next 4-Bit Command Procx TDLY2 Delay Between Last PGCx ↓ of Command Byte to First PGCx ↑ of Read of Data Word TSET2 VDD ↑ Setup Time to MCLR ↑ THLD2 Input Data Hold Time from MCLR ↑ TDLY3 Delay Between Last PGCx ↓ of Command Byte to PGDx ↑ by Programming Executive TDLY4 Programming Executive Command Processing Time	Symbol Characteristic Min	Symbol Characteristic Min Max	Symbol Characteristic Min Max Units VDD Supply Voltage During Programming VDDCORE + 0.1 3.60 V IPP Programming Current to MCLR — 5 µA IDPP Supply Current During Programming — 2 mA IDPP Supply Current During Programming — 2 mA VIL Input Low Voltage VS 0.2 VDD V VIH Input High Voltage 3.0 — V VOH Output High Voltage 3.0 — V CIO Capacitive Loading on I/O pin (PGDx) — 50 pF CF Filter Capacitor Value on Vcap 4.7 10 µF TPGC Serial Clock (PGCx) Period 100 — ns TPGCB Serial Clock (PGCx) Low Time 40 — ns TPGCL Serial Clock (PGCx) High Time 40 — ns TSET1 Input Data Hold Time from PGCx ↑ 15 — ns	

Note 1: VDDCORE must be supplied to the VDDCORE/VCAP pin if the on-chip voltage regulator is disabled. See Section 2.1 "Power Requirements" for more information. (Minimum VDDCORE allowing Flash programming is 2.25V.)

^{2:} VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and VSS, respectively.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040

Fax: 86-756-3210040

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/02/08