

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga008t-i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.0 DEVICE PROGRAMMING – ICSP

ICSP mode is a special programming protocol that allows you to read and write to PIC24FJXXXGA0XX device family memory. The ICSP mode is the most direct method used to program the device; note, however, that Enhanced ICSP is faster. ICSP mode also has the ability to read the contents of executive memory to determine if the programming executive is present. This capability is accomplished by applying control codes and instructions, serially to the device, using pins, PGCx and PGDx.

In ICSP mode, the system clock is taken from the PGCx pin, regardless of the device's oscillator Configuration bits. All instructions are shifted serially into an internal buffer, then loaded into the Instruction Register (IR) and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGDx is used to shift data in and PGCx is used as both the serial shift clock and the CPU execution clock.

Note:	During ICSP	operation, the operating
	frequency of	PGCx must not exceed
	10 MHz.	

3.1 Overview of the Programming Process

Figure 3-1 shows the high-level overview of the programming process. After entering ICSP mode, the first action is to Chip Erase the device. Next, the code memory is programmed, followed by the device Configuration registers. Code memory (including the Configuration registers) is then verified to ensure that programming was successful. Then, program the code-protect Configuration bits, if required.

FIGURE 3-1: HIGH-LEVEL ICSP™ PROGRAMMING FLOW

3.2 ICSP Operation

Upon entry into ICSP mode, the CPU is Idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGCx and PGDx, and this control code is used to command the CPU (see Table 3-1).

The SIX control code is used to send instructions to the CPU for execution, and the REGOUT control code is used to read data out of the device via the VISI register.

TABLE 3-1:	CPU CONTROL CODES IN
	ICSP™ MODE

4-Bit Control Code	Mnemonic	Description
0000b	SIX	Shift in 24-bit instruction and execute.
0001b	REGOUT	Shift out the VISI (0784h) register.
0010b-1111b	N/A	Reserved.

3.2.2 REGOUT SERIAL INSTRUCTION EXECUTION

The REGOUT control code allows for data to be extracted from the device in ICSP mode. It is used to clock the contents of the VISI register, out of the device, over the PGDx pin. After the REGOUT control code is received, the CPU is held Idle for 8 cycles. After these 8 cycles, an additional 16 cycles are required to clock the data out (see Figure 3-3).

The REGOUT code is unique because the PGDx pin is an input when the control code is transmitted to the device. However, after the control code is processed, the PGDx pin becomes an output as the VISI register is shifted out.

- Note 1: After the contents of VISI are shifted out, the PIC24FJXXXGA0XX device maintains PGDx as an output until the first rising edge of the next clock is received.
 - 2: Data changes on the falling edge and latches on the rising edge of PGCx. For all data transmissions, the Least Significant bit (LSb) is transmitted first.

DS39768D-page 14

3.4 Flash Memory Programming in ICSP Mode

3.4.1 PROGRAMMING OPERATIONS

Flash memory write and erase operations are controlled by the NVMCON register. Programming is performed by setting NVMCON to select the type of erase operation (Table 3-2) or write operation (Table 3-3) and initiating the programming by setting the WR control bit (NVMCON<15>).

In ICSP mode, all programming operations are self-timed. There is an internal delay between the user setting the WR control bit and the automatic clearing of the WR control bit when the programming operation is complete. Please refer to **Section 7.0** "AC/DC **Characteristics and Timing Requirements**" for information about the delays associated with various programming operations.

TABLE 3-2: NVMCON ERASE OPERATIONS

NVMCON Value	Erase Operation
404Fh	Erase all code memory, executive memory and Configuration registers (does not erase Unit ID or Device ID registers).
4042h	Erase a page of code memory or executive memory.

TABLE 3-3: NVMCON WRITE OPERATIONS

NVMCON Value	Write Operation	
4003h	Write a Configuration Word register.	
4001h	Program 1 row (64 instruction words) of code memory or executive memory.	

3.4.2 STARTING AND STOPPING A PROGRAMMING CYCLE

The WR bit (NVMCON<15>) is used to start an erase or write cycle. Setting the WR bit initiates the programming cycle.

All erase and write cycles are self-timed. The WR bit should be polled to determine if the erase or write cycle has been completed. Starting a programming cycle is performed as follows:

BSET NVMCON, #WR

3.5 Erasing Program Memory

The procedure for erasing program memory (all of code memory, data memory, executive memory and code-protect bits) consists of setting NVMCON to 404Fh and executing the programming cycle.

A Chip Erase can erase all of user memory or all of both the user and configuration memory. A table write instruction should be executed prior to performing the Chip Erase to select which sections are erased.

When this table write instruction is executed:

- If the TBLPAG register points to user space (is less than 0x80), the Chip Erase will erase only user memory.
- If TBLPAG points to configuration space (is greater than or equal to 0x80), the Chip Erase will erase both user and configuration memory.

If configuration memory is erased, the internal oscillator Calibration Word, located at 0x807FE, will be erased. This location should be stored prior to performing a whole Chip Erase and restored afterward to prevent internal oscillators from becoming uncalibrated.

Figure 3-5 shows the ICSP programming process for performing a Chip Erase. This process includes the ICSP command code, which must be transmitted (for each instruction), Least Significant bit first, using the PGCx and PGDx pins (see Figure 3-2).

Note:	Program memory must be erased before
	writing any data to program memory.

FIGURE 3-5: CHIP ERASE FLOW

Command (Binary)	Data (Hex)	Description
Step 1: Exit	the Reset vector.	
0000	000000	NOP
0000	040200	GOTO 0x200
0000	000000	NOP
Step 2: Set	the NVMCON to era	se all program memory.
0000	2404FA	MOV #0x404F, W10
0000	883B0A	MOV W10, NVMCON
Step 3: Set	TBLPAG and perforr	n dummy table write to select what portions of memory are erased.
0000	200000	MOV # <pageval>, W0</pageval>
0000	880190	MOV W0, TBLPAG
0000	200000	MOV #0x0000, W0
0000	BB0800	TBLWTL W0,[W0]
0000	000000	NOP
0000	000000	NOP
Step 4: Initia	te the erase cycle.	
0000	A8E761	BSET NVMCON, #WR
0000	000000	NOP
0000	000000	NOP
Step 5: Repeat this step to poll the WR bit (bit 15 of NVMCON) until it is cleared by the hardware.		
0000	040200	GOTO 0x200
0000	000000	NOP
0000	803B02	MOV NVMCON, W2
0000	883C22	MOV W2, VISI
0000	000000	NOP
0001	<visi></visi>	Clock out contents of the VISI register.
0000	000000	NOP

TABLE 3-4: SERIAL INSTRUCTION EXECUTION FOR CHIP ERASE

3.7 Writing Configuration Words

The PIC24FJXXXGA0XX family configuration is stored in Flash Configuration Words at the end of the user space program memory and in multiple register Configuration Words located in the test space.

These registers reflect values read at any Reset from program memory locations. The values can be changed only by programming the content of the corresponding Flash Configuration Word and resetting the device. The Reset forces an automatic reload of the Flash stored configuration values by sequencing through the dedicated Flash Configuration Words and transferring the data into the Configuration Words and transferring the data into the Configuration Word once it has been programmed, the device must be Chip Erased, as described in **Section 3.5 "Erasing Program Memory"**, and reprogrammed to the desired value. It is not possible to program a '0' to '1', but they may be programmed from a '1' to '0' to enable code protection.

Table 3-7 shows the ICSP programming details for programming the Configuration Word locations, including the serial pattern with the ICSP command code which must be transmitted, Least Significant bit first, using the PGCx and PGDx pins (see Figure 3-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register.

The TBLPAG register must be loaded with the following:

- 96 and 64 Kbyte devices 00h
- 128 Kbyte devices 01h

To verify the data by reading the Configuration Words after performing the write in order, the code protection bits initially should be programmed to a '1' to ensure that the verification can be performed properly. After verification is finished, the code protection bit can be programmed to a '0' by using a word write to the appropriate Configuration Word.

TABLE 3-6: DEFAULT CONFIGURATION REGISTER VALUES

Address	Name	Default Value
Last Word	CW1	7FFFh ⁽¹⁾
Last Word – 2	CW2	FFFFh

Note 1: CW1<15> is reserved and must be programmed to '0'.

Command (Binary)	Data (Hex)	Description	
Step 1: Exit	the Reset vector.		
0000 0000 0000	000000 040200 000000	NOP GOTO 0x200 NOP	
Step 2: Initia	lize the Write Pointe	er (W7) for the TBLWT instruction.	
0000	2xxxx7	MOV <cw2address15:0>, W7</cw2address15:0>	
Step 3: Set t	he NVMCON regist	er to program CW2.	
0000 0000	24003A 883B0A	MOV #0x4003, W10 MOV W10, NVMCON	
Step 4: Initia	lize the TBLPAG re	gister.	
0000	200xx0 880190	MOV <cw2address23:16>, W0 MOV W0, TBLPAG</cw2address23:16>	
Step 5: Load	the Configuration r	egister data to W6.	
0000	2xxxx6	MOV # <cw2_value>, W6</cw2_value>	
Step 6: Write	e the Configuration r	register data to the write latch and increment the Write Pointer.	
0000	000000	NOP	
0000	BB1B86	TBLWTL W6, [W7++]	
0000	000000	NOP	
Stop 7. Initia	to the write evole	NOP	
0000	A8E761	NOD	
0000	000000	NOP	
Step 8: Repe	eat this step to poll t	he WR bit (bit 15 of NVMCON) until it is cleared by the hardware.	
0000	040200	GOTO 0x200	
0000	000000	NOP	
0000	803B02	MOV NVMCON, W2	
0000	883C22	MOV W2, VISI	
0000	000000	NOP	
0001	<visi></visi>	Clock out contents of the VISI register.	
0000	000000	NOP	
Step 9: Rese	Step 9: Reset device internal PC.		
0000	040200	GOTO 0x200	
0000	000000	NOP	
Step 10: Repeat Steps 5-9 to write CW1.			

TABLE 3-7: SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION REGISTERS

3.8 Reading Code Memory

Reading from code memory is performed by executing a series of TBLRD instructions and clocking out the data using the REGOUT command.

Table 3-8 shows the ICSP programming details for reading code memory. In Step 1, the Reset vector is exited. In Step 2, the 24-bit starting source address for reading is loaded into the TBLPAG register and W6 register. The upper byte of the starting source address is stored in TBLPAG and the lower 16 bits of the source address are stored in W6.

To minimize the reading time, the packed instruction word format that was utilized for writing is also used for reading (see Figure 3-6). In Step 3, the Write Pointer, W7, is initialized. In Step 4, two instruction words are read from code memory and clocked out of the device, through the VISI register, using the REGOUT command. Step 4 is repeated until the desired amount of code memory is read.

Command (Binary)	Data (Hex)	Description
Step 1: Exit	Reset vector.	
0000	000000	NOP
0000	040200	GOTO 0x200
0000	000000	NOP
Step 2: Initia	alize TBLPAG and t	he Read Pointer (W6) for TBLRD instruction.
0000	200xx0	MOV # <sourceaddress23:16>, W0</sourceaddress23:16>
0000	880190	MOV W0, TBLPAG
0000	2xxxx6	MOV # <sourceaddress15:0>, W6</sourceaddress15:0>
Step 3: Initia	alize the Write Poin	ter (W7) to point to the VISI register.
0000	207847	MOV #VISI, W7
0000	000000	NOP
Step 4: Rea the	ad and clock out the REGOUT comman	contents of the next two locations of code memory, through the VISI register, using d.
0000	BA0B96	TBLRDL [W6], [W7]
0000	000000	NOP
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
0000	BADBB6	TBLRDH.B[W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BAD3D6	TBLRDH.B[++W6], [W/]
0000	000000	NOP
0000		NOP Clock out contents of WISI register
0001	000000	NOD
0000	BAOBBE	
0000	000000	NOP
0000	000000	NOP
0001	<visi></visi>	Clock out contents of VISI register
0000	000000	NOP
Step 5: Res	et device internal P	С.
0000	040200	GOTO 0x200
0000	000000	NOP
Step 6: Rep	peat Steps 4 and 5 u	until all desired code memory is read.

TABLE 3-8: SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY

4.5.2 PROGRAMMING VERIFICATION

After code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer's buffer.

The READP command can be used to read back all of the programmed code memory.

Alternatively, you can have the programmer perform the verification after the entire device is programmed using a checksum computation.

4.6 Configuration Bits Programming

4.6.1 OVERVIEW

The PIC24FJXXXGA0XX family has Configuration bits stored in the last two locations of implemented program memory (see Table 2-2 for locations). These bits can be set or cleared to select various device configurations. There are three types of Configuration bits: system operation bits, code-protect bits and unit ID bits. The system operation bits determine the power-on settings for system level components, such as oscillator and Watchdog Timer. The code-protect bits prevent program memory from being read and written.

The register descriptions for the CW1 and CW2 Configuration registers are shown in Table 4-2.

Bit Field	Register	Description
I2C1SEL ⁽¹⁾	CW2<2>	I2C1 Pin Mapping bit 1 = Default location for SCL1/SDA1 pins 0 = Alternate location for SCL1/SDA1 pins
DEBUG	CW1<11>	Background Debug Enable bit 1 = Device will reset in User mode 0 = Device will reset in Debug mode
FCKSM1:FCKSM0	CW2<7:6>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
FNOSC2:FNOSC0	CW2<10:8>	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRCDIV) oscillator with postscaler 110 = Reserved 101 = Low-Power RC (LPRC) oscillator 100 = Secondary (SOSC) oscillator 011 = Primary (XTPLL, HSPLL, ECPLL) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRCPLL) oscillator with postscaler and PLL 000 = Fast RC (FRC) oscillator
FWDTEN	CW1<7>	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
GCP	CW1<13>	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = User program memory is code-protected
GWRP	CW1<12>	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
ICS	CW1<8>	ICD Communication Channel Select bit 1 = Communicate on PGC2/EMUC2 and PGD2/EMUD2 0 = Communicate on PGC1/EMUC1 and PGD1/EMUD1

TABLE 4-2: PIC24FJXXXGA0XX FAMILY CONFIGURATION BITS DESCRIPTION

Note 1: Available on 28 and 44-pin packages only.

2: Available only on 28 and 44-pin devices with a silicon revision of 3042h or higher.

Bit Field	Register	Description
ICS ⁽¹⁾	CW1<8>	ICD Pin Placement Select bit 11 = ICD EMUC/EMUD pins are shared with PGC1/PGD1 10 = ICD EMUC/EMUD pins are shared with PGC2/PGD2 01 = ICD EMUC/EMUD pins are shared with PGC3/PGD3 00 = Reserved; do not use
IESO	CW2<15>	Internal External Switchover bit 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled
IOL1WAY ⁽¹⁾	CW2<4>	 IOLOCK Bit One-Way Set Enable bit The OSCCON<iolock> bit can be set and cleared as needed (provided an unlocking sequence is executed)</iolock> The OSCCON<iolock> bit can only be set once (provided an unlocking sequence is executed). Once IOLOCK is set, this prevents any possible future RP register changes</iolock>
JTAGEN	CW1<14>	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled
OSCIOFNC	CW2<5>	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
SOSCSEL1: SOSCSEL0 ⁽²⁾	CW2<12:11>	Secondary Oscillator Power Mode Select bits 11 = Default (high drive strength) mode 01 = Low-Power (low drive strength) mode x0 = Reserved; do not use
POSCMD1: POSCMD0	CW2<1:0>	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
WDTPOST3: WDTPOST0	CW1<3:0>	Watchdog Timer Prescaler bit 1111 = 1:32,768 1110 = 1:16,384 0001 = 1:2 0000 = 1:1
WDTPRE	CW1<4>	Watchdog Timer Postscaler bit 1 = 1:128 0 = 1:32
WINDIS	CW1<6>	Windowed WDT bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode; FWDTEN must be '1'
WUTSEL1: WUTSEL0 ⁽²⁾	CW2<14:13>	Voltage Regulator Standby Mode Wake-up Time Select bits 11 = Default regulator wake time used 01 = Fast regulator wake time used x0 = Reserved; do not use

	DICALE INVECTORY FAMILY CONFIGURATION DITE DESCRIPTION (CONTINUES	••
IADLE 4-2.	FIC24FJAAAGAUAA FAIMILT CONFIGURATION DITS DESCRIPTION (CONTINUEL	"

Note 1: Available on 28 and 44-pin packages only.

2: Available only on 28 and 44-pin devices with a silicon revision of 3042h or higher.

4.7 Exiting Enhanced ICSP Mode

Exiting Program/Verify mode is done by removing VIH from MCLR, as shown in Figure 4-6. The only requirement for exit is that an interval, P16, should elapse between the last clock and program signals on PGCx and PGDx before removing VIH.

EXITING ENHANCED ICSP™ MODE

5.2 Programming Executive Commands

The programming executive command set is shown in Table 5-1. This table contains the opcode, mnemonic, length, time-out and description for each command. Functional details on each command are provided in **Section 5.2.4 "Command Descriptions"**.

5.2.1 COMMAND FORMAT

All programming executive commands have a general format consisting of a 16-bit header and any required data for the command (see Figure 5-4). The 16-bit header consists of a 4-bit opcode field, which is used to identify the command, followed by a 12-bit command length field.

11	0	
Opcode Length		
Command Data First Word (if required)		
•		
•		
Command Data Last Word (if required)		
r	11 Length nand Data First Word (if required) • • nand Data Last Word (if required)	

The command opcode must match one of those in the command set. Any command that is received which does not match the list in Table 5-1 will return a "NACK" response (see **Section 5.3.1.1 "Opcode Field**").

The command length is represented in 16-bit words since the SPI operates in 16-bit mode. The programming executive uses the command length field to determine the number of words to read from the SPI port. If the value of this field is incorrect, the command will not be properly received by the programming executive.

5.2.2 PACKED DATA FORMAT

When 24-bit instruction words are transferred across the 16-bit SPI interface, they are packed to conserve space using the format shown in Figure 5-5. This format minimizes traffic over the SPI and provides the programming executive with data that is properly aligned for performing table write operations.

FIGURE 5-5: PACKED INSTRUCTION WORD FORMAT

15	8	7	0
	LS	W1	
	MSB2	MSB1	
	LS	W2	
LSWx: Least Significant 16 bits of instruction word			
MSBx: Most Significant Bytes of instruction word			

Note: When the number of instruction words transferred is odd, MSB2 is zero and LSW2 can not be transmitted.

5.2.3 PROGRAMMING EXECUTIVE ERROR HANDLING

The programming executive will "NACK" all unsupported commands. Additionally, due to the memory constraints of the programming executive, no checking is performed on the data contained in the programmer command. It is the responsibility of the programmer to command the programming executive with valid command arguments or the programming operation may fail. Additional information on error handling is provided in **Section 5.3.1.3 "QE_Code Field"**.

5.2.10 PROGW COMMAND

15	12	11	8	7	0
Opcode			Length		
Data_MSB			Addr_MSB		
		Addr	_LS		
			Data	LS	

Field	Description	
Opcode	Dh	
Length	4h	
Reserved	0h	
Addr_MSB	MSB of 24-bit destination address	
Addr_LS	Least Significant 16 bits of 24-bit destination address	
Data_MSB	MSB of 24-bit data	
Data_LS	Least Significant 16 bits of 24-bit data	

The PROGW command instructs the programming executive to program one word of code memory (3 bytes) to the specific memory address.

After the word has been programmed to code memory, the programming executive verifies the programmed data against the data in the command.

Expected Response (2 words):

1600h 0002h

5.2.11 QBLANK COMMAND

15 12	11 0	
Opcode	Length	
	PSize_MSW	
PSize_LSW		

Field Description	
Opcode	Ah
Length	3h
PSize Length of program memory to ch in 24-bit words plus one (max. of 49152)	

The QBLANK command queries the programming executive to determine if the contents of code memory and code-protect Configuration bits (GCP and GWRP) are blank (contain all '1's). The size of code memory to check must be specified in the command.

The Blank Check for code memory begins at 0h and advances toward larger addresses for the specified number of instruction words.

QBLANK returns a QE_Code of F0h if the specified code memory and code-protect bits are blank; otherwise, QBLANK returns a QE_Code of 0Fh.

Expected Response (2 words for blank device):

1AF0h

0002h

Expected Response (2 words for non-blank device):

1A0Fh

0002h

Note: QBLANK does not check the system operation Configuration bits, since these bits are not set to '1' when a Chip Erase is performed.

5.2.12 QVER COMMAND

15	12	11
Opcode		

11

le Length

0

Field	Description	
Opcode	Bh	
Length	1h	

The QVER command queries the version of the programming executive software stored in test memory. The "version.revision" information is returned in the response's QE_Code using a single byte with the following format: main version in upper nibble and revision in the lower nibble (i.e., 23h means version 2.3 of programming executive software).

Expected Response (2 words):

1BMNh (where "MN" stands for version M.N) 0002h

5.3 Programming Executive Responses

The programming executive sends a response to the programmer for each command that it receives. The response indicates if the command was processed correctly. It includes any required response data or error data.

The programming executive response set is shown in Table 5-2. This table contains the opcode, mnemonic and description for each response. The response format is described in **Section 5.3.1 "Response Format"**.

TABLE 5-2:PROGRAMMING EXECUTIVE
RESPONSE OP CODES

Opcode	Mnemonic	Description
1h	PASS	Command successfully processed
2h	FAIL	Command unsuccessfully processed
3h	NACK	Command not known

5.3.1 RESPONSE FORMAT

All programming executive responses have a general format consisting of a two-word header and any required data for the command.

Field	Description
Opcode	Response opcode
Last_Cmd	Programmer command that generated the response
QE_Code	Query code or error code.
Length	Response length in 16-bit words (includes 2 header words)
D_1	First 16-bit data word (if applicable)
D_N	Last 16-bit data word (if applicable)

5.3.1.1 Opcode Field

The opcode is a 4-bit field in the first word of the response. The opcode indicates how the command was processed (see Table 5-2). If the command was processed successfully, the response opcode is PASS. If there was an error in processing the command, the response opcode is FAIL and the QE_Code indicates the reason for the failure. If the command sent to the programming executive is not identified, the programming executive returns a NACK response.

5.3.1.2 Last_Cmd Field

The Last_Cmd is a 4-bit field in the first word of the response and indicates the command that the programming executive processed. Since the programming executive can only process one command at a time, this field is technically not required. However, it can be used to verify that the programming executive correctly received the command that the programmer transmitted.

5.3.1.3 QE_Code Field

The QE_Code is a byte in the first word of the response. This byte is used to return data for query commands and error codes for all other commands.

When the programming executive processes one of the two query commands (QBLANK or QVER), the returned opcode is always PASS and the QE_Code holds the query response data. The format of the QE_Code for both queries is shown in Table 5-3.

TABLE 5-3: QE_Code FOR QUERIES

Query	QE_Code
QBLANK	0Fh = Code memory is NOT blank F0h = Code memory is blank
QVER	0xMN, where programming executive software version = M.N (i.e., 32h means software version 3.2)

When the programming executive processes any command other than a query, the QE_Code represents an error code. Supported error codes are shown in Table 5-4. If a command is successfully processed, the returned QE_Code is set to 0h, which indicates that there was no error in the command processing. If the verify of the programming for the PROGP or PROGC command fails, the QE_Code is set to 1h. For all other programming executive errors, the QE_Code is 2h.

TABLE 5-4: QE_Code FOR NON-QUERY COMMANDS

QE_Code	Description
0h	No error
1h	Verify failed
2h	Other error

5.3.1.4 Response Length

The response length indicates the length of the programming executive's response in 16-bit words. This field includes the 2 words of the response header.

With the exception of the response for the READP command, the length of each response is only 2 words.

The response to the READP command uses the packed instruction word format described in **Section 5.2.2** "**Packed Data Format**". When reading an odd number of program memory words (N odd), the response to the READP command is (3 * (N + 1)/2 + 2) words. When reading an even number of program memory words (N even), the response to the READP command is (3 * N/2 + 2) words.

PIC24FJXXXGA0XX

Command (Binary)	Data (Hex)	Description
Step 15: Set	the Read Pointer (W6) and load the (next four write) latches.
0000	EB0300	CLR W6
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B[W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B[W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BB0BB6	TBLWTL [W6++], [W7]
0000	000000	NOP
0000	000000	NOP
0000	BBDBB6	TBLWTH.B[W6++], [W7++]
0000	000000	NOP
0000	000000	NOP
0000	BBEBB6	TBLWTH.B[W6++], [++W7]
0000	000000	NOP
0000	000000	NOP
0000	BB1BB6	TBLWTL [W6++], [W7++]
0000	000000	NOP
0000		NOP
Step 16: Rep	eat Steps 14-15, si	xteen times, to load the write latches for the 64 instructions.
0000	AOLIOI	NOD
0000	000000	
Step 18: Rep	eat this step to poll	the WR bit (bit 15 of NVMCON) until it is cleared by the bardware
0000	040200	
0000	000000	NOP
0000	803B02	MOV NVMCON W2
0000	883C22	MOV W2. VIST
0000	000000	NOP
0001	<visi></visi>	Clock out contents of the VISI register.
0000	000000	NOP
Step 19: Res	et the device intern	al PC.
0000	040200	GOTO 0x200
0000	000000	NOP
Step 20: Rep sure ensu	eat Steps 14-19 un to initialize the wri ure that the calibrat	til all 16 rows of executive memory have been programmed. On the final row, make te latches at the Diagnostic and Calibration Words locations with 0xFFFFFF to ion is not overwritten.

TABLE 5-5: PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)

6.0 DEVICE DETAILS

6.1 Device ID

The Device ID region of memory can be used to determine mask, variant and manufacturing information about the chip. The Device ID region is 2×16 bits and it can be read using the READC command. This region of memory is read-only and can also be read when code protection is enabled.

Table 6-1 shows the Device ID for each device, Table 6-2 shows the Device ID registers and Table 6-3 describes the bit field of each register.

TABLE 6-1: DEVICE IDs

Device	DEVID
PIC24FJ16GA002	0444h
PIC24FJ16GA004	044Ch
PIC24FJ32GA002	0445h
PIC24FJ32GA004	044Dh
PIC24FJ48GA002	0446h
PIC24FJ48GA004	044Eh
PIC24FJ64GA002	0447h
PIC24FJ64GA004	044Fh
PIC24FJ64GA006	0405h
PIC24FJ64GA008	0408h
PIC24FJ64GA010	040Bh
PIC24FJ96GA006	0406h
PIC24FJ96GA008	0409h
PIC24FJ96GA010	040Ch
PIC24FJ128GAGA006	0407h
PIC24FJ128GAGA008	040Ah
PIC24FJ128GAGA010	040Dh

TABLE 6-2: PIC24FJXXXGA0XX DEVICE ID REGISTERS

Addross	Nomo	Bit															
Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FF0000h	DEVID	-	– FAMID<7:0>				DEV<5:0>										
FF0002h	DEVREV			— MAJF				JRV<	2:0>	—			DOT<2:0>				

TABLE 6-3: DEVICE ID BIT DESCRIPTIONS

Bit Field	Register	Description
FAMID<7:0>	DEVID	Encodes the family ID of the device
DEV<5:0>	DEVID	Encodes the individual ID of the device
MAJRV<2:0>	DEVREV	Encodes the major revision number of the device
DOT<2:0>	DEVREV	Encodes the minor revision number of the device

TABLE 6-4: CHECKSUM COMPUTATION (CONTINUED)

Device	Read Code Protection	Checksum Computation	Erased Checksum Value	Checksum with 0xAAAAAA at 0x0 and Last Code Address		
	Disabled	CFGB + SUM(0:0157FB)	0xF8CC	0xF6CE		
PIC24FJ120GAGA000	Enabled	0	0x0000	0x0000		
	Disabled	CFGB + SUM(0:0157FB)	0xF8CC	0xF6CE		
PIC24FJ120GAGA000	Enabled	0	0x0000	0x0000		
	Disabled	CFGB + SUM(0:0157FB)	0xF8CC	0xF6CE		
PIC24FJ128GAGA010	Enabled	0	0x0000	0x0000		

Legend: <u>Item</u> <u>Description</u>

SUM[a:b] = Byte sum of locations, a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked), 64/80/100-Pin Devices = Byte sum of (CW1 & 0x7DDF + CW2 & 0x87E3)

28/44-Pin Devices = Byte sum of (CW1 & 0x7FDF + CW2 & 0xFFF7)

Note: CW1 address is last location of implemented program memory; CW2 is (last location – 2).

7.0 **AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS**

Standard Operating Conditions

Operat	Operating Temperature: 0°C to +70°C. Programming at +25°C is recommended.										
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions					
D111	Vdd	Supply Voltage During Programming	VDDCORE + 0.1	3.60	V	Normal programming ^(1,2)					
D112	IPP	Programming Current on MCLR	—	5	μΑ						
D113	Iddp	Supply Current During Programming	—	2	mA						
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V						
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V						
D080	Vol	Output Low Voltage	—	0.4	V	IOL = 8.5 mA @ 3.6V					
D090	Vон	Output High Voltage	3.0	_	V	Юн = -3.0 mA @ 3.6V					
D012	Сю	Capacitive Loading on I/O pin (PGDx)	—	50	pF	To meet AC specifications					
D013	CF	Filter Capacitor Value on VCAP	4.7	10	μF	Required for controller core					
P1	TPGC	Serial Clock (PGCx) Period	100		ns						
P1A	TPGCL	Serial Clock (PGCx) Low Time	40	_	ns						
P1B	TPGCH	Serial Clock (PGCx) High Time	40		ns						
P2	TSET1	Input Data Setup Time to Serial Clock \uparrow	15		ns						
P3	THLD1	Input Data Hold Time from PGCx \uparrow	15		ns						
P4	TDLY1	Delay Between 4-Bit Command and Command Operand	40		ns						
P4A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns						
P5	TDLY2	Delay Between Last PGCx \downarrow of Command Byte to First PGCx \uparrow of Read of Data Word	20	_	ns						
P6	TSET2	VDD ↑ Setup Time to MCLR ↑	100		ns						
P7	THLD2	Input Data Hold Time from MCLR 1	25	_	ms						
P8	TDLY3	Delay Between Last PGCx \downarrow of Command Byte to PGDx \uparrow by Programming Executive	12	_	μS						
P9	TDLY4	Programming Executive Command Processing Time	40	_	μS						
P10	TDLY6	PGCx Low Time After Programming	400	_	ns						
P11	TDLY7	Chip Erase Time	400	_	ms						
P12	TDLY8	Page Erase Time	40	_	ms						
P13	TDLY9	Row Programming Time	2	_	ms						
P14	TR	MCLR Rise Time to Enter ICSP™ mode	—	1.0	μS						
P15	TVALID	Data Out Valid from PGCx ↑	10		ns						
P16	TDLY10	Delay Between Last PGCx \downarrow and $\overline{\mathrm{MCLR}}$ \downarrow	0	_	S						
P17	THLD3	MCLR ↓ to VDD ↓	100	_	ns						
P18	Τκεγ1	Delay from First $\overline{MCLR} \downarrow$ to First PGCx \uparrow for Key Sequence on PGDx	40		ns						
P19	Τκεγ2	Delay from Last PGCx ↓ for Key Sequence on PGDx to Second MCLR ↑	1		ms						
P20	TDLY11	Delay Between PGDx ↓ by Programming Executive to PGDx Driven by Host	23	—	μs						
P21	TDLY12	Delay Between Programming Executive Command Response Words	8		ns						

VDDCORE must be supplied to the VDDCORE/VCAP pin if the on-chip voltage regulator is disabled. See Section 2.1 Note 1: "Power Requirements" for more information. (Minimum VDDCORE allowing Flash programming is 2.25V.)

2: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and VSS, respectively.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

Fax: 86-21-5407-5066

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820