

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

This document contains device specific information for the following devices:

- dsPIC33FJ64GP206
- dsPIC33FJ64GP306
- dsPIC33FJ64GP310
- dsPIC33FJ64GP706
- dsPIC33FJ64GP708
- dsPIC33FJ64GP710
- dsPIC33FJ128GP206
- dsPIC33FJ128GP306
- dsPIC33FJ128GP310
- dsPIC33FJ128GP706
- dsPIC33FJ128GP708
- dsPIC33FJ128GP710
- dsPIC33FJ256GP506
- dsPIC33FJ256GP510
- dsPIC33FJ256GP710

The dsPIC33FJXXXGPX06/X08/X10 General Purpose Family of device includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes). This feature makes the family suitable for a wide variety of high-performance digital signal control applications. The device is pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows for easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.

The dsPIC33FJXXXGPX06/X08/X10 device family employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control.

The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together provide the dsPIC33FJXXXGPX06/X08/X10 Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXGPX06/X08/X10 devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXGPX06/X08/X10 devices.

Figure 1-1 illustrates a general block diagram of the various core and peripheral modules in the dsPIC33FJXXXGPX06/X08/X10 family of devices. Table 1-1 provides the functions of the various pins illustrated in the pinout diagrams.

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2^{N-1} to 2^{N-1} - 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518×10^{-5} . In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661×10^{-10} .

The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or word sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits have been provided to support saturation and overflow; they are:

- 1. OA:
 - AccA overflowed into guard bits
- 2. OB:

AccB overflowed into guard bits

3. SA:

AccA saturated (bit 31 overflow and saturation) or

AccA overflowed into guard bits and saturated (bit 39 overflow and saturation)

4. SB:

AccB saturated (bit 31 overflow and saturation) or

AccB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- 5. OAB:
 - Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to **Section 7.0 "Interrupt Controller"**) are set. This allows the user to take immediate action, for example, to correct system gain.

TABLE 4-27: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	-	—	—	_	TRISC4	TRISC3	TRISC2	TRISC1	—	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	-	-	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	-	-	_	_	_	_	LATC4	LATC3	LATC2	LATC1	_	XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-28: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTE REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	-	—	—	—	_	-	-	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
PORTE	02DA	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	-	TRISF13	TRISF12	_	_	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13	RF12	_	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	-	LATF13	LATF12	_	-	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE	_	-	ODCF13	ODCF12	_	-	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

- bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 1 SPI2IE: SPI2 Event Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7	-13: IEC3:	INTERRUPT	ENABLE C	ONTROL RE	GISTER 3				
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0		
—	_	DMA5IE	DCIIE	DCIEIE	_	—	C2IE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE		
bit 7		INTOL	TOL	TOL	WIZOZIE	OIZOZIL	bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-14	Unimplomon	ted: Read as '	o'						
bit 13	-			Complete Inter	rupt Enable bit				
bit 15	1 = Interrupt r	request enable request not enable	d		iupt Enable bit				
bit 12	•	vent Interrupt E							
		equest enable							
bit 11	•	request not ena Error Interrupt							
		request enable							
		request not enable							
bit 10-9	Unimplemen	ted: Read as '	0'						
bit 8	C2IE: ECAN2	2 Event Interrup	ot Enable bit						
		request enable request not ena							
bit 7	C2RXIE: ECA	AN2 Receive D	ata Ready Int	errupt Enable	bit				
		request enable							
h # 0	•	request not ena							
bit 6		nal Interrupt 4 request enable							
	•	request not enable							
bit 5	INT3IE: Exter	mal Interrupt 3	Enable bit						
		request enable request not ena							
bit 4	T9IE: Timer9	Interrupt Enab	le bit						
		request enable							
hit 2	-	request not ena							
bit 3	T8IE: Timer8 Interrupt Enable bit 1 = Interrupt request enabled								
		request not ena							
bit 2	MI2C2IE: 12C	2 Master Even	its Interrupt E	nable bit					
		request enable request not ena							
bit 1	SI2C2IE: 12C	2 Slave Events	Interrupt Ena	able bit					
		equest enable							
	-	request not ena							
bit 0		Interrupt Enab							
		request enable request not ena							

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0						
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4 ⁽²⁾	IRQSEL3 ⁽²⁾	IRQSEL2 ⁽²⁾	IRQSEL1 ⁽²⁾	IRQSEL0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
 - **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

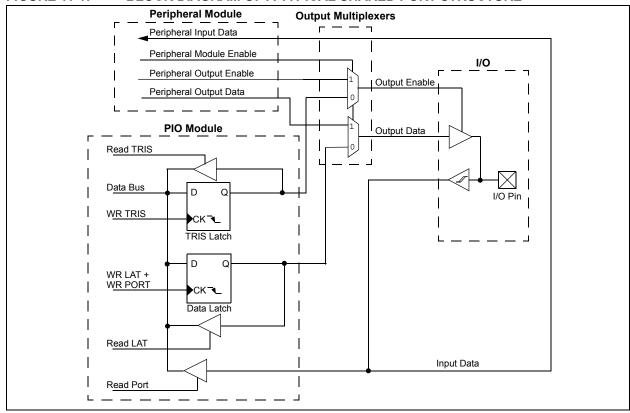
11.0 I/O PORTS

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

Note: The voltage on a digital input pin can be between -0.3V to 5.6V.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2009 Microchip Technology Inc.

REGISTER	12-1: T1CO	N: TIMER1 C	ONTROL R	EGISTER			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_	—	_	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE		S<1:0>	_	TSYNC	TCS	_
bit 7			-				bit (
Legend:							
R = Readabl	lo hit	W = Writable	bit	II – Unimplo	mented bit, read	d ac (0)	
				-			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	TON: Timer1	On bit					
	1 = Starts 16						
	0 = Stops 16						
bit 14	-	nted: Read as '					
bit 13	-	in Idle Mode bi					
		nue module ope module operat			dle mode		
bit 12-7		nted: Read as '					
bit 6	TGATE: Time	er1 Gated Time	Accumulatio	n Enable bit			
	When T1CS	= 1:					
	This bit is ign	nored.					
	When T1CS						
		ne accumulatio					
		ne accumulatio					
bit 5-4		Timer1 Input	Clock Presca	ale Select bits			
	11 = 1:256 10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	TSYNC: Time	er1 External Cl	ock Input Syr	hchronization S	elect bit		
	When TCS =	: 1:					
		nize external clo					
	-	ynchronize exte	ernal clock inp	but			
	When TCS = This bit is ign						
bit 1	-	Clock Source	Select bit				
-		clock from pin		rising edge)			
hit 0			o'				
bit 0	Unimplemen	nted: Read as '	U				

14.1 Input Capture Registers

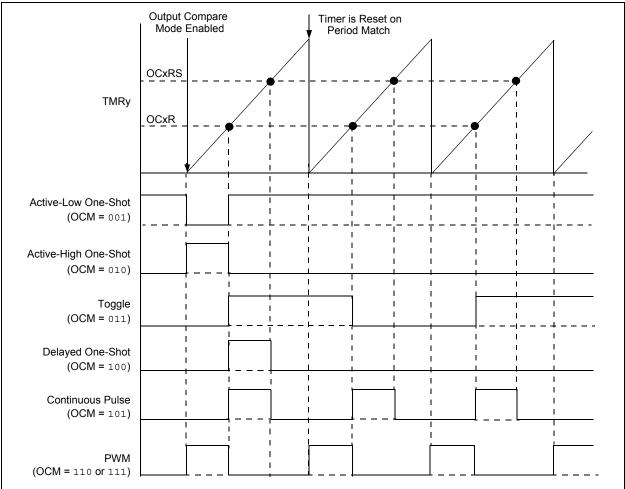
REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—		ICSIDL				_	—
bit 15							bit
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR ⁽¹⁾	ICI<	<1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	nted: Read as '	0'				
bit 13	ICSIDL: Inpu	t Capture Mod	ule Stop in Idle	e Control bit			
		ture module wi					
				operate in CPU	Idle mode		
bit 12-8	•	nted: Read as					
bit 7		t Capture Time					
		ntents are capt ntents are capt	•				
bit 6-5	ICI<1:0>: Se	lect Number of	Captures per	Interrupt bits			
	10 = Interrup 01 = Interrup	t on every four t on every third t on every seco t on every capt	capture even	t			
bit 4	-) bit (read-only)			
	1 = Input cap	ture overflow c capture overflo	ccurred	, , , , , , , , , , , , , , , , , , , ,			
bit 3	ICBNE: Input	t Capture Buffe	r Empty Statu	s bit (read-only)		
				ast one more c	apture value c	an be read	
		ture buffer is e					
bit 2-0		put Capture M					
	(Risin 110 = Unuse 101 = Captur 100 = Captur 011 = Captur 010 = Captur 001 = Captur	g edge detect of d (module disa re mode, every re mode, every re mode, every re mode, every re mode, every re mode, every :0> bits do not	only, all other of bled) 16th rising edg 4th rising edge rising edge falling edge edge (rising a control interru	control bits are lge le	not applicable	eep or Idle mode .)	2

Note 1: Timer selections may vary. Refer to the device data sheet for details.

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note:	See Section 13. "Output Compare"
	(DS70209) in the "dsPIC33F Family Ref-
	erence Manual" for OCxR and OCxRS
	register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx rising edge
010	Active-High One-Shot	1	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
100	Delayed One-Shot	0	OCx falling edge
101	Continuous Pulse	0	OCx falling edge
110	PWM without Fault Protection	'0', if OCxR is zero '1', if OCxR is non-zero	No interrupt
111	PWM with Fault Protection	'0', if OCxR is zero'1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4

FIGURE 15-2: OUTPUT COMPARE OPERATION

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

bit 15							bit 8
—	—	OCSIDL	—	_	—	—	—
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

REGISTER	19-5: CiFIF	O: ECAN™ F	FO STATU	S REGISTER			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—			FBP	<5:0>		
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—			FNRI	3<5:0>		
bit 7	·						bit 0
Legend:							
R = Readabl	le bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14 bit 13-8 bit 7-6 bit 5-0	FBP<5:0>: F 011111 = R 011110 = R	B30 buffer RB1 buffer	er Pointer bits				
	011111 = RI 011110 = RI	B31 buffer B30 buffer RB1 buffer					

REGISTER	21-2: ADxC0	ON2: ADCx	CONTROL RE	EGISTER 2	(where x = 1	or 2)	
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>				CSCNA	CHPS	<1:0>
bit 15							bit
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS			SMP	<3:0>		BUFM	ALTS
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	e bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15-13	VCEG<2.0>	Converter Vol	tage Reference	Configuration	hite		
511 15-15		VREF+	VREF-				
	000	AVDD	Avss	=			
		rnal VREF+	Avss	-			
	010	AVDD	External VREF-	-			
	011 Exte	rnal VREF+	External VREF-				
	1xx	Avdd	Avss				
bit 12-11	Unimplemen	ted: Read as	ʻ0'				
bit 10	CSCNA: Scar	n Input Select	ions for CH0+ d	uring Sample	A bit		
	1 = Scan inp	uts		C .			
	0 = Do not so	can inputs					
bit 9-8	CHPS<1:0>:	Selects Chan	nels Utilized bits	3			
			1:0> is: U-0, Ur	nimplementee	d, Read as '0'		
			CH2 and CH3				
	01 = Convert		-11				
bit 7			(only valid whe	n BIJEM = 1)			
	1 = ADC is c	urrently filling	second half of b	ouffer, user sh	ould access dat		
		, ,		er, user should	l access data in	second half	
bit 6	Unimplemen	ted: Read as	'0'				
bit 5-2	SMPI<3:0>: S operations pe		ent Rate for DN	IA Addresses	bits or number	of sample/conv	ersion
	1111 = Increi	ments the D	MA address o	or generates	interrupt after	completion of	every 16t
	1110 = Increi		MA address c	or generates	interrupt after	completion of	every 15t
	samp	le/conversion	operation				
	•						
				or generates	interrupt after	completion o	f every 2r
	0000 = Increi	e/conversion ments the l e/conversion	DMA address	or generate	es interrupt a	fter completio	n of eve
bit 1	BUFM: Buffer	Fill Mode Se	lect bit				
		-	buffer on first ir fer from the beg		econd half of the	e buffer on next	interrupt
bit 0	-	-	ple Mode Selec	-			
		-	-		nple and Sample	e B on next san	nple
			nput selects for		,		

REGISTER	21-6: ADxC	HS0: ADCx IN	IPUT CHAN	NEL 0 SELE	CT REGISTI	ER	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		—			CH0SB<4:03	>	
bit 15			•				bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA		—			CH0SA<4:0	>	
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 14-13 bit 12-8 bit 7	CH0SB<4:0> Same definition CH0NA: Cha 1 = Channel (ited: Read as '0 : Channel 0 Poi on as bit<4:0>. nnel 0 Negative 0 negative input 0 negative input 	sitive Input S Input Select t is AN1				
bit 6-5	Unimplemen	ted: Read as 'c)'				
bit 4-0	11111 = Cha 11110 = Cha • • • • • • • • • • • • • • • • • • •	Channel 0 Positive i innel 0 positive i	input is AN31 input is AN30 input is AN2 input is AN1		e A bits		

Note: ADC2 can only select AN0 through AN15 as positive input.

22.4 Watchdog Timer (WDT)

For dsPIC33FJXXXGPX06/X08/X10 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

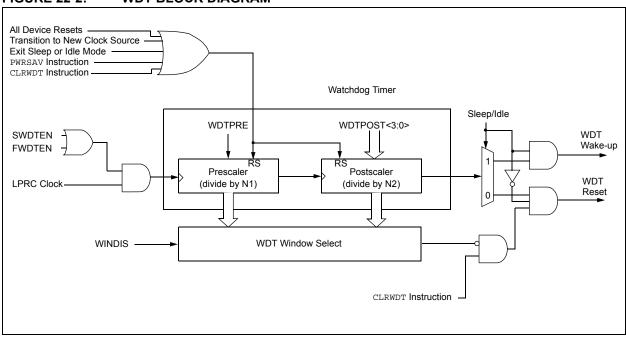
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler and then can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The CLRWDT and PWRSAV instructions
	clear the prescaler and postscaler counts
	when executed.

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 22-2: WDT BLOCK DIAGRAM

24.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

24.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost-effective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

FIGURE 25-21: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

APPENDIX A: REVISION HISTORY

Revision A (October 2006)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
Section 1.0 "Device Overview"	Added External Interrupt pin information (INT0 through INT4) to Table 1-1.
Section 3.0 "Memory Organization"	Updated Change Notification Register Map table title to reflect application with dsPIC33FJXXXMCX10 devices (Table 3-2).
	Added Change Notification Register Map tables (Table 3-3 and Table 3-4) for dsPIC33FJXXXMCX08 and dsPIC33FJXXXMCX06 devices, respectively.
	Updated the bit range for AD1CON3 (ADCS<7:0>) in the ADC1 Register Map and added Note 1 (Table 3-15).
	Updated the bit range for AD2CON3 (ADCS<7:0>) in the ADC2 Register Map (Table 3-16).
	Updated the Reset value for C1FEN1 (FFFF) in the ECAN1 Register Map When C1CTRL1.WIN = 0 or 1 (Table 3-18) and updated the title to reflect applicable devices.
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 0 to reflect applicable devices (Table 3-19).
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 1 to reflect applicable devices (Table 3-20).
	Updated the Reset value for C2FEN1 (FFFF) in the ECAN2 Register Map When C2CTRL1.WIN = 0 or 1 (Table 3-21) and updated the title to reflect applicable devices.
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 0 to reflect applicable devices (Table 3-22).
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 1 to reflect applicable devices (Table 3-23).
	Updated Reset value for TRISA (C6FF) and changed the bit 12 and bit 13 values for ODCA to unimplemented in the PORTA Register Map (Table 3-25).
	Changed the bit 10 and bit 9 values for PMD1 to unimplemented in the PMD Register Map (Table 3-34).
Section 5.0 "Reset"	Added POR and BOR references in Reset Flag Bit Operation (Table 5-1).
Section 7.0 "Direct Memory Access (DMA)"	Updated the table cross-reference in Note 2 in the DMAxREQ register (Register 7-2).

TABLE A-1: MAJOR SECTION UPDATES

Clock Frequency and Switching147
Program Address Space
Construction
Data Access from Program Memory Using Program
Space Visibility69
Data Access from Program Memory Using Table Instruc-
tions
Data Access from, Address Generation67
Memory Map 33
Table Read Instructions
TBLRDH68
TBLRDL
Visibility Operation69
Program Memory
Interrupt Vector
Organization
Reset Vector

R

Reader Response
Registers
ADxCHS0 (ADCx Input Channel 0 Select234
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) 233
ADxCON1 (ADCx Control 1)228
ADxCON2 (ADCx Control 2)230
ADxCON3 (ADCx Control 3)231
ADxCON4 (ADCx Control 4)232
ADxCSSH (ADCx Input Scan Select High)235
ADxCSSL (ADCx Input Scan Select Low) 235
ADxPCFGH (ADCx Port Configuration High)
ADxPCFGL (ADCx Port Configuration Low)236
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) 205
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 206
CiCFG1 (ECAN Baud Rate Configuration 1) 202
CiCFG2 (ECAN Baud Rate Configuration 2)
CiCTRL1 (ECAN Control 1) 194
CiCTRL2 (ECAN Control 2) 195
CiEC (ECAN Transmit/Receive Error Count)
CIFCTRL (ECAN FIFO Control) 197
CiFEN1 (ECAN Acceptance Filter Enable)
CiFIFO (ECAN FIFO Status)
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 208,
209
CiINTE (ECAN Interrupt Enable)
CiINTF (ECAN Interrupt Flag)199
CiRXFnEID (ECAN Acceptance Filter n Extended Identi-
fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-
fier)
CiRXFUL1 (ECAN Receive Buffer Full 1) 211
CiRXFUL2 (ECAN Receive Buffer Full 2) 211
CiRXMnEID (ECAN Acceptance Filter Mask n Extended
Identifier)210
CiRXMnSID (ECAN Acceptance Filter Mask n Standard
Identifier)210
CiRXOVF1 (ECAN Receive Buffer Overflow 1) 212
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 212
CiTRBnDLC (ECAN Buffer n Data Length Control)215
CiTRBnDm (ECAN Buffer n Data Field Byte m) 215
CiTRBnEID (ECAN Buffer n Extended Identifier) 214
CiTRBnSID (ECAN Buffer n Standard Identifier) 214
CiTRBnSTAT (ECAN Receive Buffer n Status) 216
CiTRmnCON (ECAN TX/RX Buffer m Control)
CiVEC (ECAN Interrupt Code) 196

CLKDIV (Clock Divisor)	142
CORCON (Core Control)	
DCICON1 (DCI Control 1)	
DCICON2 (DCI Control 2)	
DCICON3 (DCI Control 3)	
DCISTAT (DCI Status)	
DMACS0 (DMA Controller Status 0)	
DMACS0 (DMA Controller Status 0) DMACS1 (DMA Controller Status 1)	100
DMACST (DMA Controller Status T) DMAXCNT (DMA Channel x Transfer Count)	100
DMAxCON (DMA Channel x Control)	
DMAxPAD (DMA Channel x Peripheral Address)	
DMAxREQ (DMA Channel x IRQ Select)	
DMAxSTA (DMA Channel x RAM Start Address A	
DMAxSTB (DMA Channel x RAM Start Address B	
DSADR (Most Recent DMA RAM Address)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	183
I2CxSTAT (I2Cx Status)	
ICxCON (Input Capture x Control)	
IEC0 (Interrupt Enable Control 0)	98
IEC1 (Interrupt Enable Control 1)	100
IEC2 (Interrupt Enable Control 2)	102
IEC3 (Interrupt Enable Control 3)	104
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	97
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG Interrupt Control and Status Register	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
IPC11 (Interrupt Priority Control 11)	
IPC12 (Interrupt Priority Control 12)	
IPC13 (Interrupt Priority Control 13)	
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	123
IPC2 (Interrupt Priority Control 2)	108
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
NVMCOM (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control Regist	143
149	.er 1)
PMD2 (Peripheral Module Disable Control Regist	er 2)
151	
PMD3 (Peripheral Module Disable Control Regist	ter 3)
153	
RCON (Reset Control)	78
RSCON (DCI Receive Slot Control)	
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
	175