

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp306-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

TABLE 4-	1: C	PU COR		STERS	MAP	1	T	1	1		1	1	1		1	1	1	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	egister 0								0000
WREG1	0002								Working Re	egister 1								0000
WREG2	0004								Working Re	egister 2								0000
WREG3	0006								Working Re	egister 3								0000
WREG4	0008								Working Re	egister 4								0000
WREG5	000A								Working Re	egister 5								0000
WREG6	000C								Working Re	egister 6								0000
WREG7	000E								Working Re	egister 7								0000
WREG8	0010								Working Re	egister 8								0000
WREG9	0012								Working Re	egister 9								0000
WREG10	0014								Working Re	gister 10								0000
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Re	gister 12								0000
WREG13	001A								Working Re	gister 13								0000
WREG14	001C								Working Re	gister 14								0000
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer Li	mit Register	•							xxxx
ACCAL	0022							Accum	ulator A Lov	Word Regi	ster							0000
ACCAH	0024							Accum	ulator A Higl	n Word Regi	ister							0000
ACCAU	0026							Accumu	lator A Upp	er Word Reg	gister							0000
ACCBL	0028							Accum	ulator B Lov	/ Word Regi	ster							0000
ACCBH	002A							Accum	ulator B Higl	n Word Regi	ister							0000
ACCBU	002C							Accumu	ulator B Upp	er Word Reg	gister							0000
PCL	002E							Program	n Counter Lo	w Word Reg	gister							0000
PCH	0030	_		—	_		—	_	—			Progra	am Counter I	-ligh Byte R	legister			0000
TBLPAG	0032	_		_	_		_	—	—			Table	Page Addres	ss Pointer R	Register			0000
PSVPAG	0034	_		_	_		_	—	—		Prog	am Memor	y Visibility Pa	age Address	s Pointer R	egister		0000
RCOUNT	0036			•			•	Repe	eat Loop Co	unter Regist	er							XXXX
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	_		_	_	_	_	_	_	_	_			DOSTAR	RTH<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							0	xxxx
DOENDH	0040	_		_	_	_	_	_	_	_	_			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_		BWN	/<3:0>		1	YWN	<3:0>	•		XWN	1<3:0>		0000
XMODSRT	0048		•					2	XS<15:1>	•							0	xxxx
XMODEND	004A							2	XE<15:1>								1	xxxx
YMODSRT	004C	1							YS<15:1>								0	xxxx
YMODEND	004E	1						```	YE<15:1>								1	xxxx
Legend:	x = unkno	wn value on	Reset. — =	unimpleme	nted, read	as '0'. Res	et values a	are shown i	n hexadecii	mal.							1	

DS70286C-page 40

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXGPX06/X08/X10

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	—	_	—	_	_	_	—	Receive Register 0							0000	
I2C1TRN	0202	_	_	_	_	_	_	_	_	Transmit Register 0								00FF
I2C1BRG	0204	_	_	_	_	_	_	_		Baud Rate Generator Register								
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	—	_	—	_	—		Address Register 0									
I2C1MSK	020C	_	—	_	—	—	—		Address Mask Register 0									

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: I2C2 REGISTER MAP

	-																		
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
I2C2RCV	0210	—		_		_		_	- Receive Register c								0000		
I2C2TRN	0212	—		—		—		—	-	Transmit Register									
I2C2BRG	0214	_	_	_	_	_	_	_				Baud Rat	e Generato	r Register				0000	
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000	
I2C2ADD	021A	_	_	_	_	_	_			Address Register									
I2C2MSK	021C	_	_	_	_	_	_	Address Mask Register											

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	_	_	—	_	_	—	LATC4	LATC3	LATC2	LATC1	—	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-28: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTE REGISTER MAP⁽¹⁾

	-	-		-														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	_	_	-	_	_	_	—	-	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	OOFF
PORTE	02DA	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	—	—	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	-	—	TRISF13	TRISF12	-	-	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	—	—	RF13	RF12	_	—	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	_	LATF13	LATF12	_	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE	_	_	ODCF13	ODCF12	_	_	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write #0x55 to NVMKEY.
 - c) Write #0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set	up NVMCO	N for block erase operation		
	MOV	#0x4042, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
; Init	pointer	to row to be ERASED		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
	TBLWTL	WO, [WO]	;	Set base address of erase block
	DISI	#5	;	Block all interrupts with priority <7
			;	for next 5 instructions
	MOV	#0x55, W0		
	MOV	W0, NVMKEY	;	Write the 55 key
	MOV	#0xAA, W1	;	
	MOV	W1, NVMKEY	;	Write the AA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—	_	1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST	—	_	3
	ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	3, 4, 6
	XTPLL, HSPLL	TSTARTUP + TRST	Tost + Tlock	TFSCM	3, 4, 5, 6
MCLR	Any Clock	Trst	_	_	3
WDT	Any Clock	Trst	—	—	3
Software	Any Clock	TRST	—	_	3
Illegal Opcode	Any Clock	Trst	—	—	3
Uninitialized W	Any Clock	TRST	—	—	3
Trap Conflict	Any Clock	Trst			3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

- **2:** TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.
- 3: TRST = Internal state Reset time (20 µs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL lock time (20 μs nominal).
- **6**: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- · The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

REGISTER 7-18:	IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3
----------------	--

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_	_	_	_		DMA1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		AD1IP<2:0>				U1TXIP<2:0>	
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as 'o)'				
bit 10-8	DMA1IP<2:0>	>: DMA Channe	el 1 Data Tra	nsfer Complete	Interrupt Price	prity bits	
	111 = Interrup	ot is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
	001 = Interrup 000 = Interrup	ot is priority 1 ot source is disa	abled				
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6-4	AD1IP<2:0>:	ADC1 Convers	sion Complet	e Interrupt Prior	rity bits		
	111 = Interrup	ot is priority 7 (ł	nighest priorit	ty interrupt)	•		
	•						
	•						
	001 = Interrur	ot is priority 1					
	000 = Interrup	ot source is disa	abled				
bit 3	Unimplemen	ted: Read as 'd)'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	mitter Interru	pt Priority bits			
	111 = Interrup	ot is priority 7 (ł	nighest priorit	ty interrupt)			
	•						
	•						
	• 001 = Interrur	ot is priority 1					
	000 = Interrup	ot source is disa	abled				
	1						

REGISTER 9	-2: CLKDI	V: CLOCK D	IVISOR RE	GISTER			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	11-0	R/W-0	R/W-0	R/W/-0	R/W-0	R/W-0
PLLPOS	ST<1:0>	_	10.00-0	1000-0	PIIPRF<4	0>	10.00-0
bit 7							bit 0
Legend:		y = Value set	from Configu	ration bits on PC)R		
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkno	own
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	r on Interrupt bi s will clear the I s have no effec	t DOZEN bit ar t on the DOZ	nd the processor EN bit	clock/periph	eral clock ratio is	set to 1:1
5	000 = FCY/1 001 = FCY/2 010 = FCY/4 011 = FCY/8 100 = FCY/16 101 = FCY/32 110 = FCY/64 111 = FCY/12	(default)					
bit 11	DOZEN: DOZ	ZE Mode Enabl	e bit ⁽¹⁾				
	1 = DOZE<2 0 = Processo	:0> field specifi or clock/periphe	es the ratio b ral clock ratio	etween the perip o forced to 1:1	oheral clocks	and the processo	or clocks
bit 10-8	FRCDIV<2:03 000 = FRC di 001 = FRC di 010 = FRC di 011 = FRC di 100 = FRC di 101 = FRC di 110 = FRC di 111 = FRC di	Internal Fast vide by 1 (defa vide by 2 vide by 4 vide by 8 vide by 16 vide by 32 vide by 64 vide by 256	RC Oscillato ult)	or Postscaler bits			
bit 7-6	PLLPOST<1: 00 = Output/2 01 = Output/4 10 = Reserve 11 = Output/8	2 2 4 (default) d 3	Output Divide	er Select bits (als	o denoted a	s 'N2', PLL postsc	aler)
bit 5	Unimplemen	ted: Read as 'o	כ'				
bit 4-0	PLLPRE<4:0 00000 = Inpu 00001 = Inpu •	>: PLL Phase I tt/2 (default) tt/3	Detector Inpu	it Divider bits (als	so denoted a	is 'N1', PLL presca	aler)
	• 11111 = Inpu	ıt/33					

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: ECAN2 Module Disable bit
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled

REGISTER 17	EGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER								
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	_		_			AMSK9	AMSK8		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0		
bit 7							bit 0		
Legend:									
R = Readable I	oit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown			

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

REGISTER 19-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5	SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter
bit 4	Unimplemented: Read as '0'
bit 3	EXIDE: Extended Identifier Enable bit
	If MIDE = 1 then:
	1 = Match only messages with extended identifier addresses0 = Match only messages with standard identifier addresses
	If MIDE = 0 then:
h # 0	
DIL Z	Unimplemented: Read as 0
bit 1-0	EID<17:16>: Extended Identifier bits
	 1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-17: CiRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

TABLE 25-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT		Standard O (unless oth Operating te	perating Con erwise state emperature	nditions: 3.0 d) -40°C ≤ TA	V to 3.6V ≤ +85°C for Industrial		
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions				
Power-Down Current (IPD) ⁽²⁾							
DC60d	55	500	μA	-40°C			
DC60a	211	500	μA	+25°C	3.3V	Base Power-Down Current ^(3,4)	
DC60b	244	500	μA	+85°C			
DC61d	8	13	μA	-40°C			
DC61a	10	15	μA	+25°C	3.3V	Watchdog Timer Current: ΔIWDT ⁽³⁾	
DC61b	12	20	μA	+85°C			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

DC CHARACTERISTICS			Standard Ope (unless other Operating terr	erating Condit wise stated) perature -40	tions: 3.0V to 3 $0^{\circ}C \le TA \le +85$	5. 6V 5°C for Industri	al
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units		Conditions	
DC73a	11	35	1:2	mA			
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	11	30	1:128	mA			
DC70a	42	50	1:2	mA			
DC70f	26	30	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	25	30	1:128	mA			
DC71a	41	50	1:2	mA			
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	24	30	1:128	mA			

TABLE 25-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

FIGURE 25-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 25-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

				Standard Operatin (unless otherwise Operating temperating	ng Condit stated) ature -40	:ions: 3.0)°C ≤ TA ≤	∀ to 3.6∀ +85°C	
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Мах	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μs	_	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	—	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	_	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	_	
		From Clock	400 kHz mode	_	1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be	
			400 kHz mode	1.3	_	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5		μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF	—	

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" in the "*dsPIC33F Family Reference Manual*".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 25-21: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar	dsPIC 33 FJ 256 GP7 10 T I / PT - XXX mark	Examples: a) dsPIC33FJ256GP710I/PT: General-purpose dsPIC33, 64 KB program memory, 100-pin, Industrial temp., TQFP package.
Package		
Pattern		
Architecture:	33 = 16-bit Digital Signal Controller	
Flash Memory Family:	FJ = Flash program memory, 3.3V	
Product Group:	GP2 = General purpose family GP3 = General purpose family GP5 = General purpose family GP7 = General purpose family	
Pin Count:	06 = 64-pin 08 = 80-pin 10 = 100-pin	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flatpack) PF = 14x14 mm TQFP (Thin Quad Flatpack)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)	
	ES = Engineering Sample	