

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp310-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXGPX06/X08/X10 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXGPX06/X08/X10 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJXXXGPX06/X08/X10 device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory locations is part of Y data RAM and is in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

	-0.	LOANZ				1020		III - T I	OIX USI	10001 0		100/100					IOLD)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF10EID	056A				EID<	15:8>				EID<7:0>						xxxx		
C2RXF11SID	056C		SID<10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx			
C2RXF11EID	056E		EID<15:8>								EID	<7:0>				xxxx		
C2RXF12SID	0570		SID<10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx			
C2RXF12EID	0572	EID<15:8>				EID<7:0>						xxxx						
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	17:16>	xxxx
C2RXF13EID	0576				EID<	15:8>							EID	<7:0>				xxxx
C2RXF14SID	0578				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF14EID	057A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF15SID	057C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF15EID	057E				EID<	15:8>							EID	<7:0>	•	•		xxxx

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXGP706/708/710 DEVICES ONLY (CONTINUED)

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

		1 1201010 (00		
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	Reserved
66	58	0x000088	0x000188	Reserved
67	59	0x00008A	0x00018A	DCIE – DCI Error
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	Reserved
72	64	0x000094	0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-0x0000 FE	0x0001A4-0x0001 FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source	
0	0x000004	0x000104	Reserved	
1	0x000006	0x000106	Oscillator Failure	
2	0x000008	0x000108	Address Error	
3	0x00000A	0x00010A	Stack Error	
4	0x00000C	0x00010C	Math Error	
5	5 0x0000E		DMA Error Trap	
6	6 0x000010		Reserved	
7	0x000012	0x000112	Reserved	

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		OC7IP<2:0>				OC6IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		OC5IP<2:0>		_		IC6IP<2:0>	L:1.0
Dit /							DIT U
Legend:							
R = Readabl	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimplem	nented: Read as '0)'				
bit 14-12	OC7IP<2:	0>: Output Compa	re Channel	7 Interrupt Prio	rity bits		
	111 = Inte	rrupt is priority 7 (h	highest priori	ity interrupt)			
	•						
	•						
	001 = Inte	rrupt is priority 1	abled				
hit 11		nupt source is use	,				
bit 10-8			, re Channel (6 Interrunt Prio	rity hits		
	111 = Inte	rrupt is priority 7 (h	nighest priori	itv interrupt)	They bits		
	•		5	-,, -, -, -, -, -, -, -, -, -, -,			
	•						
	• 001 = Inte	rrupt is priority 1					
	000 = Inte	rrupt source is disa	abled				
bit 7	Unimplem	nented: Read as 'o)'				
bit 6-4	OC5IP<2:	0>: Output Compa	re Channel	5 Interrupt Prio	rity bits		
	111 = Inte	rrupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
	001 = Inte	rrupt is priority 1					
	000 = Inte	rrupt source is disa	abled				
bit 3	Unimplem	ented: Read as 'o)'		.,		
bit 2-0	IC6IP<2:0	>: Input Capture C	hannel 6 Int	errupt Priority t	DItS		
	•	rupt is priority 7 (r	iignest priori	ity interrupt)			
	•						
	•	and the sector of the state					
	001 = Inte	rrupt is priority 1	abled				
		1 upt 300100 13 0130					

REGISTER	7-33: INTTR	EG: INTERR	UPT CONT	ROL AND ST	ATUS REGIS	TER			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
	_	—	_		ILR	<3:0>			
bit 15							bit 8		
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				VECNUM<6:0	>				
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-12	Unimplemen	ted: Read as 'o	כ'						
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	vel bits					
	1111 = CPU	Interrupt Priorit	y Level is 15						
	•								
	•								
	0001 = CPU	Interrupt Priorit	v Level is 1						
	0000 = CPU	Interrupt Priorit	y Level is 0						
bit 7	Unimplemen	ted: Read as 'o	o'						
bit 6-0	VECNUM<6:	0>: Vector Num	ber of Pendi	ng Interrupt bits					
	0111111 = lr	nterrupt Vector	pending is nu	umber 135					
	•								
	•								
	•	torrupt Voctor	nonding is n	umbor 0					

0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

REGISTER 8-	7: DMAC	S0: DMA CO	NTROLLER	STATUS RE	EGISTER 0			
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	
bit 7							bit 0	
Legend:		C = Clear onl	y bit					
R = Readable I	oit	W = Writable	bit		mented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
hit 1E		annal 7 Darinh	aral Mrita Cal	liaion Flog hit				
DIL 15	1 = Write colli	sion detected		lision Flag bit				
	0 = No write com	collision detected	ed					
bit 14	PWCOL6: Ch	annel 6 Periph	eral Write Col	lision Flag bit				
	1 = Write colli	sion detected		-				
	0 = No write c	collision detected	ed					
bit 13	PWCOL5: Channel 5 Peripheral Write Collision Flag bit							
	1 = Write colli	sion detected	bd					
hit 12	PWCOL4: Ch	annel 4 Perinh	eral Write Col	lision Flag hit				
511 12	1 = Write colli	sion detected		lision r lag bit				
	0 = No write o	collision detected	ed					
bit 11	PWCOL3: Ch	annel 3 Periph	eral Write Col	lision Flag bit				
	1 = Write colli	sion detected						
	0 = No write c	collision detecte	ed					
bit 10	PWCOL2: Ch	annel 2 Periph	ieral Write Col	lision Flag bit				
	1 = VVrite colli0 = No write c	sion detected	ed					
bit 9	PWCOL1: Ch	annel 1 Periph	eral Write Col	lision Flag bit				
	1 = Write colli	sion detected						
	0 = No write o	collision detected	ed					
bit 8	PWCOL0: Ch	annel 0 Periph	eral Write Col	lision Flag bit				
	1 = Write colli	sion detected	od.					
hit 7		annel 7 DMA I	SAM Write Co	llision Flag hit				
	1 = Write colli	sion detected		ilision riag bit				
	0 = No write c	collision detected	ed					
bit 6	XWCOL6: Channel 6 DMA RAM Write Collision Flag bit							
	1 = Write colli	sion detected						
	0 = No write c	collision detecte	ed					
bit 5	XWCOL5: Channel 5 DMA RAM Write Collision Flag bit							
	\perp = vvrite colli 0 = No write c	sion detected	ed					
bit 4	XWCOI 4: Ch	annel 4 DMA I	 RAM Write Co	llision Flag bit				
	1 = Write colli	sion detected						
	0 = No write o	collision detected	ed					

9.1 CPU Clocking System

There are seven system clock options provided by the dsPIC33FJXXXGPX06/X08/X10:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 3. EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 22.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJXXXGPX06/X08/X10 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$FCY = \frac{FOSC}{2}$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

REGISTER 9-4:

OSCTUN: FRC OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_		_	_
bit 15	÷			÷		·	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			TUN	<5:0> ⁽¹⁾		
bit 7	÷						bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimp				U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as 'o)'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ce	enter frequency	+ 11.625% (8	3.23 MHz)			
	011110 = Ce	inter frequency	+ 11.25% (8.2	20 MHz)			
	•						
	•						
	• • • • • • • • • • • • • • • • • • • •	nter frequency	+ 0 375% (7	40 MHZ)			
	0000001 = Ce	enter frequency	(7.37 MHz nd	ominal)			
	111111 = Ce	nter frequency	- 0.375% (7.3	345 MHz)			
	•						
	•						
	•						
	100001 = Ce	nter frequency	- 11.625% (6	.52 MHz)			
	100000 = Ce	enter frequency	- 12% (6.491	VIHZ)			

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLK-DIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11.** "**Timers**" (DS70205) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

REGISTER 1	7-2: I2CxS	TAT: I2Cx ST	ATUS REC	SISTER				
R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC	
ACKSTAT	TRSTAT	—		—	BCL	GCSTAT	ADD10	
bit 15						·	bit 8	
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	C R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC	
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	
bit 7							bit 0	
Logondy			nonted hit r	ood oo '0'		C = Clear only	hit	
D - Doodoblo	hit	W = Writable	hit	LS – Sot in h	ardwara			
-n = value at P	'UR	I = BILIS SEL			ared		own	
bit 15	ACKSTAT: Ac (when operati 1 = NACK rec 0 = ACK rece	cknowledge Stand ng as I ² C mas ceived from sla ived from slave	atus bit ter, applicat ve e	le to master tra	nsmit operation)		
	Hardware set	or clear at end	d of slave Ac	knowledge.				
bit 14	TRSTAT: Trar	nsmit Status bi	t (when oper	rating as I ² C ma	ister, applicable	to master trans	mit operation)	
	 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. 							
bit 13-11	Unimplemen	Unimplemented: Read as '0'						
bit 10	BCL: Master	Bus Collision [Detect bit					
	1 = A bus coll 0 = No collisio Hardware set	ision has beer on at detection of	l detected d	uring a master o n.	operation			
bit 9	GCSTAT: Ger	neral Call Statu	is bit					
	1 = General c 0 = General c Hardware set	all address wa all address wa when address	s received s not receiv matches ge	ed eneral call addre	ess. Hardware o	lear at Stop det	ection.	
bit 8	ADD10: 10-B	it Address Stat	us bit					
	1 = 10-bit add 0 = 10-bit add Hardware set	lress was mato lress was not r at match of 2r	ched natched id byte of ma	atched 10-bit ad	ldress. Hardwa	re clear at Stop	detection.	
bit 7	IWCOL: Write	e Collision Dete	ect bit					
	1 = An attemp 0 = No collisio	ot to write the I	2CxTRN reg	jister failed beca	ause the I ² C mo	odule is busy		
h # C					usy (cleared by	/ soltware).		
bit 6	1 = A byte wa 0 = No overflo Hardware set	is received white w at attempt to t	le the I2CxF ransfer I2Cx	RCV register is s RSR to I2CxRC	still holding the	previous byte software).		
bit 5	D A: Data/Ac	Idress bit (whe	n operating	as I ² C slave)	· ·	,		
	1 = Indicates 0 = Indicates Hardware clea	that the last by that the last by ar at device ad	rte received rte received dress match	was data was device add n. Hardware set	ress by reception of	⁻ slave byte.		
bit 4	P: Stop bit				•	-		
	1 = Indicates 0 = Stop bit w Hardware set	that a Stop bit as not detecte or clear when	has been de d last Start, Repe	etected last ated Start or Sto	p detected.			

NOTES:

REGISTER 19-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	—	—		DNCNT<4:0>				
bit 7		•					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is			nown	
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	ber bits				
	10010-11111	= Invalid sele	ction					
	10001 = Com	pare up to dat	a byte 3. bit 6	with EID<17>				
	•							
	•							
	00001 = Compare up to data byte 1, bit 7 with EID<0>							

00000 = Do not compare data bytes

REGISTER	21-2: ADxCON2: A	DCx CONTROL F	REGISTER 2	(where x = 1	or 2)	
R/W-0	R/W-0 R/	N-0 U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>	_	_	CSCNA	CHPS<	:1:0>
bit 15						bit 8
P 0					D/M/ O	
	0-0 K/		R/W-U	R/W-U		
bit 7	—	51011	-1<3.0>		BUFINI	ALTS bit C
Logondy						
Legenu:	a = b	/ritable bit		mented bit wee		
R = Readable	$e \ Dit \qquad vv = vv$			mented bit, rea		
-n = Value at	POR '1' = B	it is set	0' = Bit is cle	eared	x = Bit is unkno	own
bit 15-13	VCFG<2:0>: Conver	ter Voltage Referenc	e Configuration	bits		
	VREF+	VREF-				
	000 Avdd	Avss				
	001 External VRE	F+ Avss				
	010 AVDD	External VREF	-			
	011 External VRE	F+ External VREF	-			
	1xx AVDD	Avss				
bit 12-11	Unimplemented: Re	ad as '0'				
bit 10	CSCNA: Scan Input	Selections for CH0+	during Sample	A bit		
	1 = Scan inputs					
	0 = Do not scan inpu	its				
bit 9-8	CHPS<1:0>: Selects	Channels Utilized bi	ts			
	When AD12B = 1, C 1x = Converts CH0, 01 = Converts CH0 00 = Converts CH0	HPS<1:0> is: U-0, L CH1, CH2 and CH3 and CH1	Inimplemented	l, Read as '0'		
bit 7	BUFS: Buffer Fill Sta	tus bit (only valid wh	en BUFM = 1)			
	1 = ADC is currently 0 = ADC is currently	filling second half of filling first half of buf	buffer, user sho fer. user should	ould access dat access data in	a in first half second half	
bit 6	Unimplemented: Re	ad as '0'	-,			
bit 5-2	SMPI<3:0>: Selects	Increment Rate for D	MA Addresses	bits or number	of sample/conve	ersion
	1111 = Increments	the DMA address	or generates	interrupt after	completion of	every 16th
	sample/conv 1110 = Increments	ersion operation the DMA address	or generates	interrupt after	completion of	every 15th
	• •					
	• 0001 = Increments	the DMA address	or generates	interrupt after	completion of	every 2nd
	sample/conve 0000 = Increments sample/conve	ersion operation the DMA address ersion operation	s or generate	es interrupt a	after completion	of every
bit 1	BUFM: Buffer Fill Mo	de Select bit				
	1 = Starts filling first0 = Always starts filli	half of buffer on first ng buffer from the be	interrupt and se ginning	econd half of the	e buffer on next i	nterrupt
bit 0	ALTS: Alternate Inpu	t Sample Mode Sele	ct bit			
	1 = Uses channel inp0 = Always uses cha	out selects for Sampl innel input selects fo	le A on first san r Sample A	ple and Sampl	e B on next sam	ple

Bit Field	Register	Description
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 0001 = 1:2 0000 = 1:1
JTAGEN	FICD	JTAG Enable bits 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved

TABLE 22-2: dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

FIGURE 25-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 25 25: INDUT CARTURE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characte	Characteristic ⁽¹⁾		Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns		
			With Prescaler	10	—	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns	—	
			With Prescaler	10	—	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 25-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC10	TccF	OCx Output Fall Time				ns	See parameter D032
OC11	TccR	OCx Output Rise Time	_	_	_	ns	See parameter D031

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 25-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock sources".
	Added the center frequency in the OSCTUN register for the FRC Tuning bits (TUN<5:0>) value 011111 and updated the center frequency for bits value 011110 (Register 8-4).
Section 15.0 "Serial Peripheral Interface (SPI)"	Removed redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i> , while retaining the SPI Module Block Diagram (Figure 15-1).
Section 16.0 "Inter-Integrated Circuit™ (I ² C™)"	Removed sections 16.3 through 16.13, while retaining the I ² C Block Diagram (Figure 16-1) (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
Section 17.0 "Universal Asynchronous Receiver Transmitter (UART)"	Removed sections 17.1 through 17.7 (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
Section 18.0 "Enhanced CAN (ECAN™) Module"	Removed sections 18.4 through 18.6 (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
	Updated Baud Rate Prescaler (BRP<5:0>) bit values in the CiCFG1 register (Register 18-9).
	Changed default bit value from '0' to '1' for bits 6 through 15 (FLTEN6-FLTEN15) in the CiFEN1 register (Register 18-11).
Section 19.0 "Data Converter Interface (DCI) Module"	Removed sections 19.3 through 19.7 (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
Section 20.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Removed Equation 20-1 (ADC Conversion Clock Period) and Figure 20-3 (ADC Transfer Function (10-Bit Example).
	Updated AN14 and AN15 ADC values in the ADC2 Module Block Diagram (FIGURE 20-2: "ADC2 Module Block Diagram ⁽¹⁾ ").
	Added Note 2 to ADC Conversion Clock Period Block Diagram (Figure 20-3).
	Updated ADC Conversion Clock Select bits in the ADxCON3 register from ADCS< 5 :0> to ADCS< 7 :0>. Any references to these bits have also been updated throughout this data sheet (Register 20-3).
	Added Note to ADxCHS0 register (Register 21-6).
Section 21.0 "Special Features"	Updated address 0xF8000E in the Device Configuration Register Map (Table 21-1).
	Added FICD register content (BKBUG, COE, JTAGEN and ICS<1:0>) to the dsPIC33F Configuration Bits Description and removed the last two rows (Table 21-2).
	Added a Note after the second paragraph in Section 21.2 "On-Chip Voltage Regulator".