

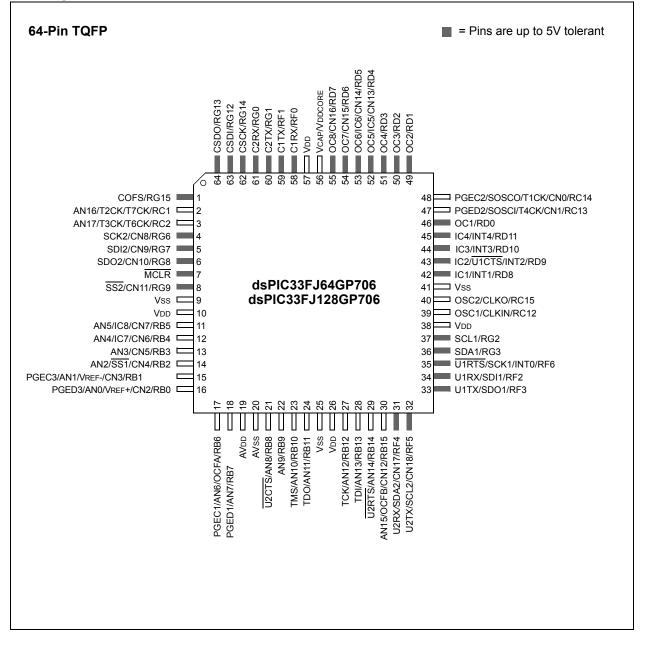
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp710t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—		1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST	—	_	3
	ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	3, 4, 6
	XTPLL, HSPLL	TSTARTUP + TRST	TOST + TLOCK	TFSCM	3, 4, 5, 6
MCLR	Any Clock	Trst	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any Clock	Trst	—	—	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	—	3
Trap Conflict	Any Clock	Trst	—	—	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

- **2:** TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.
- 3: TRST = Internal state Reset time (20 µs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL lock time (20 μs nominal).
- **6**: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- · The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

- bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 1 SPI2IE: SPI2 Event Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3	REGISTER 7-18:
--	-----------------------

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	_	—				DMA1IP<2:0>				
pit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
0-0	R/W-1	AD1IP<2:0>	R/VV-U	0-0	FV/VV-1	U1TXIP<2:0>	R/W-U			
 bit 7		AD 11F \2.02		—		011XIF<2.02	bit 0			
							Dit C			
_egend:										
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
oit 15-11	Unimplemen	ted: Read as 'd)'							
oit 10-8	DMA1IP<2:0	>: DMA Channe	el 1 Data Tra	nsfer Complete	Interrupt Prior	rity bits				
	111 = Interru	pt is priority 7 (ł	nighest priorit	y interrupt)						
	•									
	•									
	• • • 001 = Interru	pt is priority 1								
	• • 001 = Interru 000 = Interru	pt is priority 1 pt source is disa	abled							
oit 7	000 = Interru									
bit 7 bit 6-4	000 = Interru Unimplemen	pt source is disa)'	e Interrupt Prio	rity bits					
	000 = Interru Unimplemen AD1IP<2:0>:	pt source is disanted: Read as 'o)' sion Complete		rity bits					
	000 = Interru Unimplemen AD1IP<2:0>:	pt source is disa ited: Read as 'o ADC1 Convers)' sion Complete		rity bits					
	000 = Interru Unimplemen AD1IP<2:0>:	pt source is disa ited: Read as 'o ADC1 Convers)' sion Complete		rity bits					
	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • •	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h)' sion Complete		rity bits					
	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h	₎ ' sion Completi nighest priorit		rity bits					
bit 6-4	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru 001 = Interru 000 = Interru	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h pt is priority 1	_o ' sion Complete nighest priorit abled		rity bits					
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h pt is priority 1 pt source is disa	_o ' sion Completa nighest priorit abled	y interrupt)	rity bits					
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'contraction ADC1 Converse pt is priority 7 (h pt is priority 1 pt source is disa ited: Read as 'contraction)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits					
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as 'o •: UART1 Trans)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits					
	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as 'o •: UART1 Trans)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits					
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'co ADC1 Convers pt is priority 7 (h pt is priority 1 pt source is disa ited: Read as 'co >: UART1 Trans pt is priority 7 (h)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits					

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T8IP<2:0>		_		MI2C2IP<2:0>	
bit 15	·			·			bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SI2C2IP<2:0>				T7IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimplem	ented: Read as 'o)'				
bit 14-12		: Timer8 Interrupt	5				
	111 = Inte	rrupt is priority 7 (I	nighest priori	ity interrupt)			
	•						
	•						
		rrupt is priority 1					
		rrupt source is disa					
bit 11	-	ented: Read as 'o					
bit 10-8		2:0>: I2C2 Master			S		
	111 = Inte	rrupt is priority 7 (I	nighest priori	ity interrupt)			
	•						
	•						
		rrupt is priority 1					
		rrupt source is disa					
bit 7	-	ented: Read as 'o					
bit 6-4		2:0>: I2C2 Slave E					
	111 = Inte	rrupt is priority 7 (I	highest priori	ity interrupt)			
	•						
	•						
		rrupt is priority 1					
L:1 0		rrupt source is disa					
bit 3	-	ented: Read as 'o					
bit 2-0		: Timer7 Interrupt		ity interrupt)			
	⊥⊥⊥ = inte •	rrupt is priority 7 (ł	lignest prior	ity interrupt)			
	•						
	•						
		rrupt is priority 1	ablad				
	000 = Inte	rrupt source is disa	abled				

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS										
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			DSAD)R<15:8>						
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			DSAI	DR<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit		W = Writable bit		U = Unimplemen	ited bit, re	ad as '0'				
-n = Value at POR						x = Bit is unknown				

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. Circuit™ "Inter-Integrated (l²C[™])" (DS70195) in the "dsPIC33F Family Reference Manual", which is available the Microchip from web site (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The dsPIC33FJXXXGPX06/X08/X10 devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly.

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7 or 10-bit address

For details about the communication sequence in each of these modes, please refer to the "*dsPIC33F Family Reference Manual*".

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

REGISTER 1	7-3: I2CxN	ISK: I2Cx SL	AVE MODE		MASK REGIS	TER	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
			_		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown				

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

REGISTER 1	18-2: UxSTA	A: UARTx STA	TUS AND	CONTROL R	EGISTER		
R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit C
Logondi							
Legend:	. L. 14	HC = Hardwar			mented bit mee		
R = Readable		W = Writable k	DIT	-	mented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 15,13	 11 = Reserve 10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt 	D>: Transmissioned; do not use t when a charact buffer become t when the last of t when a charact t when a charact one character o	ter is transfe s empty character is s ed ter is transfe	erred to the Trais shifted out of th erred to the Trais	nsmit Shift Regi e Transmit Shif	t Register; all tr	ansmit
bit 14		nsmit Polarity In		ansmit buller)			
bit 12		ted: Read as 'o					
bit 11	-	ansmit Break bit					
	1 = Send Syn cleared b 0 = Sync Bre	nc Break on new by hardware upo eak transmissior	t transmission on completion n disabled or	n	llowed by twelve	e '0' bits, follow	ed by Stop bit
bit 10	1 = Transmit	ismit Enable bit enabled, UxTX disabled, any p	pin controlle		rted and buffer	is reset. UxTX	pin controlled
bit 9	1 = Transmit	smit Buffer Full buffer is full buffer is not ful			er can be writte	n	
bit 8	1 = Transmit	mit Shift Registe Shift Register is Shift Register i	empty and t	ransmit buffer is			as completed
bit 7-6	11 = Interrupt 10 = Interrupt 0x = Interrupt	0>: Receive Intention t is set on UxRS t is set on UxRS t is set when ar Receive buffer h	R transfer m R transfer m y character	naking the rece naking the rece is received and	ive buffer 3/4 fu	ll (i.e., has 3 da	ata characters

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for transmit operation.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
-	DMABS<2:0>		_	_	_	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—			FSA<4:0>		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable t	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 12-5	101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	ers in DMA RAI ers in DMA RAI ers in DMA RAI ers in DMA RAI rs in DMA RAM rs in DMA RAM rs in DMA RAM	M M M				
bit 4-0	=	30 buffer 31 buffer		bits			

	— R/W-0 1:0>	— R/W-0		R/W-0 BRF		R/W-0	bit a
R/W-0 SJW<	-	R/W-0	R/W-0	-	-	R/W-0	
SJW<	-	R/W-0	R/W-0	-	-	R/W-0	R/W-0
	1:0>			BRF	P<5:0>		
bit 7							
							bit
Legend:							
R = Readable b	oit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimplement	ted: Read as 'o)'				
bit 7-6	SJW<1:0>: S	ynchronization	Jump Width	bits			
	11 = Length is						
	10 = Length is						
	01 = Length is 00 = Length is						
	•	aud Rate Pres	color bite				
		$Q = 2 \times 64 \times 1/F$					
	•	J = Z X 04 X 1/1	CAN				
	•						
	•						
		2 = 2 x 3 x 1/Fo 2 = 2 x 2 x 1/Fo					

00 0000 = TQ = 2 x 1 x 1/FCAN

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DCIEN		DCISIDL	_	DLOOP	CSCKD	CSCKE	COFSD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
UNFM	CSDOM	DJST	_	<u> </u>		COFS	V<1:0>
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
	-						
bit 15	DCIEN: DCI	Module Enable	bit				
	1 = Module is						
	0 = Module is						
bit 14	-	ted: Read as '					
bit 13		Stop in Idle C					
		rill halt in CPU I rill continue to c		U Idle mode			
bit 12		ted: Read as '	-				
bit 11	•	tal Loopback M		bit			
	Ũ	•			pins internally of	connected	
	0 = Digital Lo	opback mode is	s disabled				
bit 10		nple Clock Dire					
		n is an input wh					
bit 9	•	n is an output w hple Clock Edge		ule is enabled			
DIL 9				dae sampled o	on serial clock ri	sina edae	
					n serial clock fa		
bit 8	COFSD: Frar	ne Synchroniza	ation Direction	n Control bit			
	•	n is an input wh					
	-	n is an output w	hen DCI moo	dule is enabled			
bit 7		rflow Mode bit					
		iast value writte		smit registers o	n a transmit und	demow	
bit 6		ial Data Output					
				abled transmit t	ime slots		
				transmit time s			
bit 5		ata Justification					
			otion is begur	n during the sar	ne serial clock o	cycle as the frai	me
		ization pulse smission/recer	ntion is begur	one serial clo	ck cycle after fra	ame synchroniz	ation pulse
bit 4-2		ted: Read as '	•				
bit 1-0	-	-: Frame Sync					
	11 = 20-bit A	-					
	10 = 16-bit A						
	$01 = 1^{\circ}S$ Fran	ne Sync mode					

REGISTER 20-1: DCICON1: DCI CONTROL REGISTER 1

TABLE 23-2: INSTRUCTION SET OVERVIEW

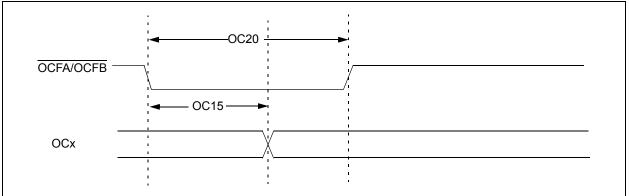
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
-		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB, Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	-	Branch Unconditionally	1	2	None
			Expr Z Expr	Branch if Zero	1	1 (2)	None
		BRA BRA	Z,Expr	Computed Branch	1	2	None
7	BSET		Wn f #bit4	Bit Set f	1	1	None
'	Taca	BSET	f,#bit4		1	1	
8	DCW	BSET	Ws,#bit4	Bit Set Ws			None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BTG	BSW.Z BTG	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9		0.00	f,#bit4	Bit Toggle f	1	1	None

TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions				
Operating Cur	rent (IDD) ⁽²⁾			-			
DC20d	27	30	mA	-40°C			
DC20a	27	30	mA	+25°C	3.3V	10 MIPS	
DC20b	27	30	mA	+85°C			
DC21d	36	40	mA	-40°C		16 MIPS	
DC21a	37	40	mA	+25°C	3.3V		
DC21b	38	45	mA	+85°C			
DC22d	43	50	mA	-40°C		20 MIPS	
DC22a	46	50	mA	+25°C	3.3V		
DC22b	46	55	mA	+85°C			
DC23d	65	70	mA	-40°C		30 MIPS	
DC23a	65	70	mA	+25°C	3.3V		
DC23b	65	70	mA	+85°C	1		
DC24d	84	90	mA	-40°C			
DC24a	84	90	mA	+25°C	3.3V	40 MIPS	
DC24b	84	90	mA	+85°C	1		

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).


TABLE 25-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SY10	TMCL	MCLR Pulse-Width (low)	2	—	_	μs	-40°C to +85°C	
SY11	Tpwrt	Power-up Timer Period		2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_	
SY20	Twdt1	Watchdog Timer Time-out Period	—	_		—	See Section 22.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 25-19)	
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	—	—	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_	_	50	ns	_
OC20	TFLT	Fault Input Pulse-Width	50	_	_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

Section Name	Update Description
Section 19.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 19-1).
	Added the ECAN Filter 15-8 Mask Selection (CiFMSKSEL2) register (see Register 19-19).
Section 21.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Replaced the ADC Module Block Diagram (see Figure 21-1) and removed Figure 21-2.
Section 22.0 "Special Features"	Added Note 2 to the Device Configuration Register Map (see Table 22-1)
Section 25.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 25-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 25-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 25-7).
	Updated Characteristics for I/O Pin Input Specifications (see Table 25-9).
	Updated Program Memory values for parameters 136, 137 and 138 (renamed to 136a, 137a and 138a), added parameters 136b, 137b and 138b, and added Note 2 (see Table 25-12).
	Added parameter OS42 (Gм) to the External Clock Timing Requirements (see Table 25-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 25-21).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

INDEX

1	١
^	•

A/D Converter	225
DMA	225
Initialization	225
Key Features	225
AC Characteristics	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
ADC2 Register Map	
Alternate Interrupt Vector Table (AIVT)	81
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	254

В

Barrel Shifter	
Bit-Reversed Addressing	64
Example	65
Implementation	
Sequence Table (16-Entry)	65
Block Diagrams	
16-bit Timer1 Module	157
A/D Module	
Connections for On-Chip Voltage Regulator	
DCI Module	
Device Clock	137. 139
DSP Engine	
dsPIC33F	
dsPIC33F CPU Core	
ECAN Module	
Input Capture	
Output Compare	
PLL	
Reset System	
Shared Port Structure	
SPI	
Timer2 (16-bit)	
Timer2/3 (32-bit)	
UART	
Watchdog Timer (WDT)	

С

C Compilers	
MPLAB C18	
MPLAB C30	
Clock Switching	145
Enabling	145
Sequence	145
Code Examples	
Erasing a Program Memory Page	75
Initiating a Programming Sequence	76
Loading Write Buffers	76
Port Write/Read	156
PWRSAV Instruction Syntax	
Code Protection	
Configuration Bits	
Description (Table)	
Configuration Register Map	
Configuring Analog Port Pins	156
CPU	
Control Register	24

CPU Clocking System Options	
Selection	138
Customer Change Notification Service	317
Customer Notification Service	317
Customer Support	
D	
Data Accumulators and Adder/Subtractor	20
Data Space Write Saturation	
Overflow and Saturation	
Round Logic	
Write Back	
Data Address Space	
Alignment	35
Memory Map for dsPIC33FJXXXGPX06/X08/X1	
es with 16 KB RAM	
Memory Map for dsPIC33FJXXXGPX06/X08/X1	0 Devic-
es with 30 KB RAM	38
Memory Map for dsPIC33FJXXXGPX06/X08/X1	0 Devic-
es with 8 KB RAM	
Near Data Space	
Software Stack	
Width	
Data Converter Interface (DCI) Module	
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	262
Program Memory	265
Temperature and Voltage Specifications	259
DCI	
Buffer Control	217
Buffer Data Alignment	
Introduction	
Transmit/Receive Shift Register	
DCI I/O Pins	
COFS	
CSCK	
CSDI	
CSDO	
DCI Module	
Register Map	
Development Support	253
DMA Module	
DMA Register Map	50
DMAC Registers	128
DMAxCNT	128
DMAxCON	128
DMAxPAD	
DMAxREQ	
DMAxSTA	
DMAxSTB	
DSP Engine	
Multiplier	
E	

ECAN Module	
CiFMSKSEL2 register	209
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	52
ECAN1 Register Map (C1CTRL1.WIN = 0)	52
ECAN1 Register Map (C1CTRL1.WIN = 1)	53

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com