

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp510t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	11.0	11.0			P 0	D 0	D 0
0-0	0-0	0-0	R/W-U		K-0		K-0
 bit 15	_	_	03	EDI		DL~2.0>	hit 8
							Dit O
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
		0 0	1.11				
Legena:	a hit	C = Clear onl	y Dit	n – Voluo ot		'1' - Dit is set	
$\Lambda' = Reauable}{\Lambda' = Rit is close$	e Dil ared	'v = Rit is unk		-n = value at	PUR nented hit re	ad as '0'	
	arcu						
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	US: DSP Mul	tiply Unsigned	Signed Control	ol bit			
	1 = DSP engi	ne multiplies a	re unsigned				
	0 = DSP engi	ne multiplies a	re signed				
bit 11	EDT: Early DO	D Loop Termina	ation Control b	olt(")			
	1 = Terminate 0 = No effect	executing DO	loop at end of	current loop ite	eration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 do lo	ops active					
	•						
	• 001 = 1 DO IO	on active					
	000 = 0 DO lo	ops active					
bit 7	SATA: AccA	Saturation Ena	ble bit				
	1 = Accumula	ator A saturatio	n enabled				
1.11.0	0 = Accumula	ator A saturatio	n disabled				
DIT 6		Saturation Ena	idle dit				
	1 = Accumula 0 = Accumula	ator B saturatio	n disabled				
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
	1 = Data spac	ce write satura	tion enabled				
	0 = Data spac	ce write satura	tion disabled				
bit 4	ACCSAT: Acc	cumulator Satu	iration Mode S	Select bit			
	1 = 9.31 satu	ration (super s	aturation)				
hit 3	IPI 3: CPU In	terrunt Priority	Level Status I	nit 3(2)			
DIT O	1 = CPU inter	rupt priority le	vel is greater t	han 7			
	0 = CPU inter	rupt priority lev	vel is 7 or less				
bit 2	PSV: Progran	n Space Visibil	ity in Data Spa	ace Enable bit			
	1 = Program	space visible i	n data space				
L:1 4	0 = Program s	space not visit	ole in data spa	ce			
DIT		ng Wootienel) re	CT DIT	od			
	0 = Unbiased (C	(convergent)	rounding enable	led			
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit			
	1 = Integer m	ode enabled fo	or DSP multipl	y ops			
	0 = Fractiona	I mode enable	d for DSP mul	tiply ops			

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJXXXGPX06/X08/X10 device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory locations is part of Y data RAM and is in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	—	_	—	_	_	_	—				Receive	Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				00FF
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Ra	te Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	—	_	—	_	—		Address Register 00							0000		
I2C1MSK	020C	_	—	_	—	—	—		Address Mask Register 00							0000		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: I2C2 REGISTER MAP

	-																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	—		_		_		_	Receive Register 00								0000	
I2C2TRN	0212	—		—		—		—	— — Transmit Register 00							OOFF		
I2C2BRG	0214	_	_	_	_	_	_	_				Baud Rat	e Generato	r Register				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	_	_		Address Register 000							0000		
I2C2MSK	021C	_	_	_	_	_	_		Address Mask Register 000								0000	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	-11. IEC1.						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
DAALO						DAMO	
R/W-0	R/W-U	R/W-U	R/W-0	R/W-U	0-0	R/W-U	R/W-U
	IC/IE	ADZIE	INTTE	CNIE		MIZCTIE	SIZCTIE
DIL 7							DIL U
Legend:							
R = Readable	> hit	W = Writable	hit	U = Unimple	mented bit read	1 as '0'	
-n = Value at	POR	(1) = Bit is set	bit	'0' = Bit is cl	eared	x = Bit is unkr	lown
iii valao at		1 Bit io oot		U Dit io di			
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt Ena	able bit			
	1 = Interrupt I	request enable	d				
	0 = Interrupt i	request not ena	abled				
bit 14	U2RXIE: UAF	RT2 Receiver I	nterrupt Enab	le bit			
	1 = Interrupt I	request enable	d				
bit 10		request not ena	abled Enchlo hit				
DIL 13	1 = Interrupt I	request enable					
	0 = Interrupt i	request enable	abled				
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
	1 = Interrupt i	request enable	d				
	0 = Interrupt i	request not ena	abled				
bit 11	T4IE: Timer4	Interrupt Enab	le bit				
	1 = Interrupt i 0 = Interrupt i	request enable request not ena	d abled				
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interr	upt Enable bit	:		
	1 = Interrupt I	request enable	d				
hit 0		ut Compare Ch	ableu	unt Enable bit			
Dit 9	1 = Interrupt i	request enable	d				
	0 = Interrupt i	request not ena	abled				
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rupt Enable bit		
	1 = Interrupt i	request enable	d				
1.1.7		request not ena	abled	-			
Dit /		Capture Chann	ei 8 Interrupt d	Enable bit			
	0 = Interrupt i	request enable	abled				
bit 6	IC7IE: Input (Capture Chann	el 7 Interrupt	Enable bit			
	1 = Interrupt i	request enable	d				
	0 = Interrupt I	request not ena	abled				
bit 5	AD2IE: ADC2	2 Conversion C	complete Inter	rupt Enable bi	it		
	1 = Interrupt i	request enable	d abled				
hit 4		request not ena	Enable bit				
	1 = nterrunt	request enable	d				
	0 = Interrupt i	request not ena	abled				

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
		DCIEIP<2:0>		_		_	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
	_	_	_	—		C2IP<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	R/W-0 U-0 U-0 U-0 - - - - bit 8 - - - U-0 U-0 R/W-1 R/W-0 R/W-0 - - C2IP<2:0> bit 0 U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown upt Priority bits hest priority interrupt) - led - - -							
-n = Value at	= Value at POR '1' = Bit is set				pared $x = Bit is unknown$					
bit 15	Unimplemen	ted: Read as '	כ'							
bit 14-12	DCIEIP<2:0>	: DCI Error Inte	errupt Priority	bits						
	111 = Interru	pt is priority 7 (highest priorit	y interrupt)						
	•									
	•									
	001 = Interru	pt is priority 1								
	000 = Interru	pt source is dis	abled							
bit 11-3	Unimplemen	ted: Read as '	כ'							
bit 2-0	C2IP<2:0>: E	ECAN2 Event Ir	nterrupt Priori	ty bits						
	111 = Interru	pt is priority 7 (highest priorit	y interrupt)						
	•									
	•									
	001 = Interru	pt is priority 1								
	000 = Interru	pt source is dis	abled							

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Oscillator**" (DS70186) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 oscillator system provides:

 Various external and internal oscillator options as clock sources

- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: dsPIC33FJXXXGPX06/X08/X10 OSCILLATOR SYSTEM DIAGRAM

REGISTER 9-	3: PLLF	BD: PLL FEEI	DBACK DI	ISOR REGIS	STER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
_		_					PLLDIV<8>
bit 15		-				·	bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLC	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable I	bit	U = Unimplei	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known

bit 15-9 Unimplemented: Read as '0'

bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

```
000000000 = 2

00000001 = 3

000000010 = 4

.

.

000110000 = 50 (default)

.

.

11111111 = 513
```

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXGPX06/X08/X10 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

REGISTER 1	7-2: I2CxS	TAT: I2Cx ST	ATUS REC	SISTER			
R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC
ACKSTAT	TRSTAT	—		—	BCL	GCSTAT	ADD10
bit 15						·	bit 8
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	C R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0
Logondy			nonted hit r	ood oo '0'		C = Clear only	hit
D - Doodoblo	hit	W = Writable	hit	LS – Sot in h	ardwara		Dit pro.sot/cloarod
		4^{\prime} = Dit is set	DIL	$10^{\circ} - 30^{\circ}$	arod		
-n = value at P	'UR	I = BILIS SEL			ared		own
bit 15	ACKSTAT: Ac (when operati 1 = NACK rec 0 = ACK rece	cknowledge Stand ng as I ² C mas ceived from sla ived from slave	atus bit ter, applicat ve e	le to master tra	nsmit operation)	
	Hardware set	or clear at end	d of slave Ac	knowledge.			
bit 14	TRSTAT: Trar	nsmit Status bi	t (when oper	rating as I ² C ma	ister, applicable	to master trans	mit operation)
	1 = Master tra 0 = Master tra Hardware set	ansmit is in pro ansmit is not in at beginning c	gress (8 bits progress f master tra	s + ACK) nsmission. Hard	lware clear at e	nd of slave Ack	nowledge.
bit 13-11	Unimplemen	ted: Read as '	0'				-
bit 10	BCL: Master	Bus Collision [Detect bit				
	1 = A bus coll 0 = No collisio Hardware set	ision has beer on at detection of	l detected d	uring a master o n.	operation		
bit 9	GCSTAT: Ger	neral Call Statu	is bit				
	1 = General c 0 = General c Hardware set	all address wa all address wa when address	s received s not receiv matches ge	ed eneral call addre	ess. Hardware o	lear at Stop det	ection.
bit 8	ADD10: 10-B	it Address Stat	us bit				
	1 = 10-bit add 0 = 10-bit add Hardware set	lress was mato lress was not r at match of 2r	ched natched id byte of ma	atched 10-bit ad	ldress. Hardwa	re clear at Stop	detection.
bit 7	IWCOL: Write	e Collision Dete	ect bit				
	1 = An attemp 0 = No collisio	ot to write the I	2CxTRN reg	jister failed beca	ause the I ² C mo	odule is busy	
h # C					usy (cleared by	/ soltware).	
bit 6	1 = A byte wa 0 = No overflo Hardware set	is received white w at attempt to t	le the I2CxF ransfer I2Cx	RCV register is s	still holding the	previous byte software).	
bit 5	D A: Data/Ac	Idress bit (whe	n operating	as I ² C slave)	· ·	,	
	1 = Indicates 0 = Indicates Hardware clea	that the last by that the last by ar at device ad	rte received rte received dress match	was data was device add n. Hardware set	ress by reception of	⁻ slave byte.	
bit 4	P: Stop bit				•	-	
	1 = Indicates 0 = Stop bit w Hardware set	that a Stop bit as not detecte or clear when	has been de d last Start, Repe	etected last ated Start or Sto	p detected.		

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJXXXGPX06/X08/X10 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits

- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit Prescaler
- Baud rates ranging from 1 Mbps to 15 bps at 16x mode at 40 MIPS
- Baud rates ranging from 4 Mbps to 61 bps at 4x mode at 40 MIPS
- 4-deep First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART is shown in Figure 18-1. The UART module consists of the key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UART SIMPLIFIED BLOCK DIAGRAM

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Typically, if the CAN module is allowed to Note: transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

Bit Field	Register	Description
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size
		(FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment
		Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFF
		Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
		Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
		(FOR 64K DEVICES) x11 = No Secure program Flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected

TABLE 22-2: dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 25-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard O (unless oth Operating te	perating Con erwise state emperature	nditions: 3.0 d) -40°C ≤ TA	V to 3.6V ≤ +85°C for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions						
Power-Down	Current (IPD) ⁽	2)								
DC60d	55	500	μA	-40°C						
DC60a	211	500	μA	+25°C	3.3V	Base Power-Down Current ^(3,4)				
DC60b	244	500	μA	+85°C						
DC61d	8	13	μA	-40°C						
DC61a	10	15	μA	+25°C	3.3V Watchdog Timer Current: ∆I					
DC61b	12	20	μA	+85°C						

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

DC CHARAC	TERISTICS		Standard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated)Operating temperature-40°C \leq TA \leq +85°C for Industrial							
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions					
DC73a	11	35	1:2	mA						
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS			
DC73g	11	30	1:128	mA						
DC70a	42	50	1:2	mA						
DC70f	26	30	1:64	mA	+25°C	3.3V	40 MIPS			
DC70g	25	30	1:128	mA						
DC71a	41	50	1:2	mA						
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS			
DC71g	24	30	1:128	mA						

TABLE 25-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic			Min	Тур	Max	Units	Conditions			
TB10	TtxH	TxCK High Time	Synchronous, no prescaler		0.5 TCY + 20			ns	Must also meet parameter TB15			
			Synchronous, with prescaler		10			ns				
TB11	TtxL	TxCK Low Time	Synchronous, no prescaler		0.5 TCY + 20	_		ns	Must also meet parameter TB15			
			Synchro with pres	nous, scaler	10		-	ns				
TB15	TtxP	TxCK Input Period	Synchro no preso	nous, caler	Tcy + 40	_	_	ns	N = prescale value			
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)			
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr	al TxCK C rement	Clock	0.5 TCY	_	1.5 TCY	_	—			

TABLE 25-24: TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20		-	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchron no presc	nchronous, Tcy prescaler			-	ns	N = prescale value
			Synchron with pres	nous, scaler	Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	I TxCK Clock		0.5 TCY	_	1.5 Тсү	—	_

FIGURE 25-19: CAN MODULE I/O TIMING CHARACTERISTICS

TABLE 25-36: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
CA10	TioF	Port Output Fall Time	—			ns	See parameter D032	
CA11	TioR	Port Output Rise Time	—	—	—	ns	See parameter D031	
CA20	Tcwf	Pulse-Width to Trigger CAN Wake-up Filter	120	—	—	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-41: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
Clock Parameters									
AD50b	TAD	ADC Clock Period	65		—	ns	—		
AD51b	TRC	ADC Internal RC Oscillator Period	—	250	—	ns	—		
Conversion Rate									
AD55b	TCONV	Conversion Time	—	12 Tad	—	—	—		
AD56b	FCNV	Throughput Rate	_		1.1	Msps	—		
AD57b	TSAMP	Sample Time	2 Tad		—	—	—		
Timing Parameters									
AD60b	TPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD		3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61b	TPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	—	—		
AD62b	Tcss	Conversion Completion to Sample Start (ASAM = $1)^{(2)}$	—	0.5 TAD	—	—	—		
AD63b	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μs	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: TDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/04/09