

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp710-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

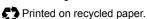
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

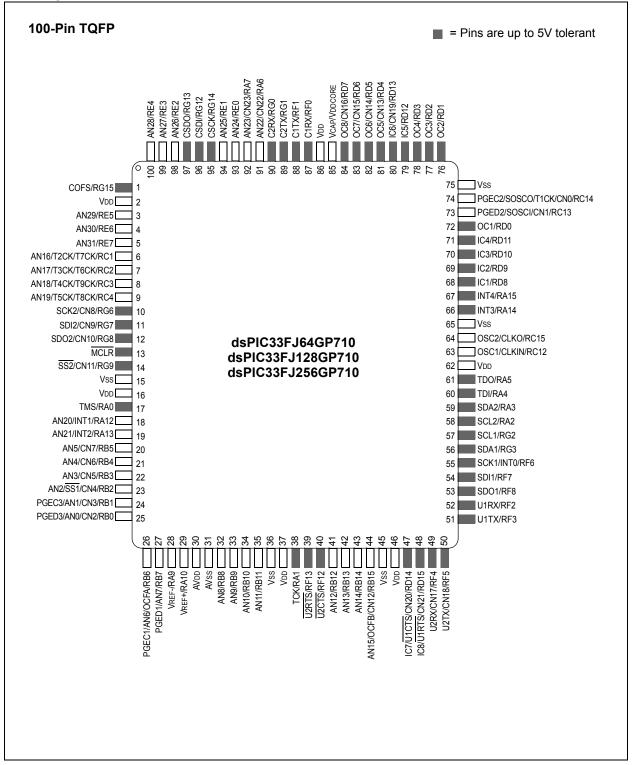
Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.


All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Pin Diagrams (Continued)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "*dsPIC33F Family Reference Manual*", which is available from the Microchip website (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJXXXGPX06/X08/X10 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

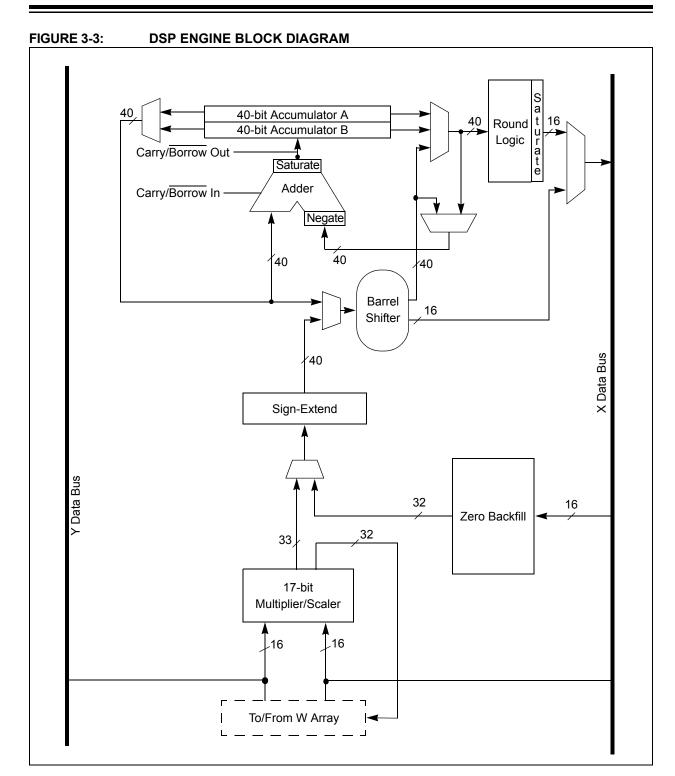
(see Section 2.2 "Decoupling Capacitors")

- VCAP/VDDCORE (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented


Note:	The	AVdd	and	AVss	pins	mus	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	rence	source.			

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XBREV	0050	BREN							2	XB<14:0>								xxxx
DISICNT	0052	_	_		Disable Interrupts Counter Register							xxxx						
BSRAM	0750	_	_	_	_	_	_	—	_	—	_	_	_	_	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	_	—	_	_	_	—	—	—	_	_	-	_	IW_SSR	IR_SSR	RL_SSR	0000
1			Divisi	and the second second	and a stand			and the second second	a tea se da a te									

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESET

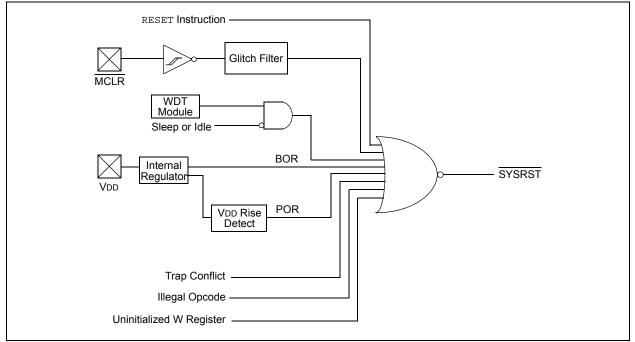
Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode and Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.


Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits, except for the POR bit (RCON<0>), that are set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			_			—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—
bit 7							bit 0

Legend:				
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	emented: Read as '0'		
bit 7	C2TXIE	: ECAN2 Transmit Data Requ	est Interrupt Enable bit	
		rrupt request enabled rrupt request not enabled		
bit 6	C1TXIE	: ECAN1 Transmit Data Requ	est Interrupt Enable bit	
		rrupt request enabled rrupt request not enabled		
bit 5	DMA7IE	: DMA Channel 7 Data Trans	fer Complete Enable Status bi	it
		rrupt request enabled rrupt request not enabled		
bit 4			fer Complete Enable Status bi	it
		rrupt request enabled rrupt request not enabled		
bit 3	Unimple	emented: Read as '0'		
bit 2	U2EIE:	UART2 Error Interrupt Enable	bit	
		rrupt request enabled rrupt request not enabled		
bit 1	U1EIE:	UART1 Error Interrupt Enable	bit	
	1 = Inter	rrupt request enabled		
	0 = Inter	rrupt request not enabled		
bit 0	Unimple	emented: Read as '0'		

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

— bit 15							
bit 15		T2IP<2:0>		—		OC2IP<2:0>	
							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC2IP<2:0>		—		DMA0IP<2:0>	
bit 7							bit
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as 'o)'				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (ł	nighest priority	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
		upt source is disa					
bit 11	Unimpleme	nted: Read as 'o)'				
bit 10-8		·: Output Compa		•	ity bits		
	111 = Interru	upt is priority 7 (h	nighest priority	y interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 7		nted: Read as 'o					
bit 6-4	IC2IP<2:0>:	Input Capture C	hannel 2 Inte	rrupt Priority b	its		
		upt is priority 7 (ł					
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 3		nted: Read as '0					
bit 2-0	-	D>: DMA Channe		sfer Complete	Interrunt Prio	rity hite	
511 2-0		upt is priority 7 (h		-		They bits	
	•			,			
	•						
	•	upt in priority 4					
		upt is priority 1 upt source is disa	abled				

REGISTER 9-	-3: PLLF	BD: PLL FEE	DBACK DI	VISOR REGIS	TER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
	_	—	_	—	_	—	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLE)IV<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unl	known

bit 15-9 Unimplemented: Read as '0'

bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

```
000000000 = 2

00000001 = 3

000000010 = 4

.

.

000110000 = 50 (default)

.

.

11111111 = 513
```

REGISTER 1	6-3: SPIxC	ON2: SPIx C	ONTROL R	EGISTER 2			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	_	—	_	_	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—		—		FRMDLY	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	wn
bit 15	FRMEN: Fran	med SPIx Supp	ort bit				
	1 = Framed S	SPIx support en	abled (SSx p	oin used as fran	ne sync pulse ir	nput/output)	
	0 = Framed S	SPIx support dis	sabled				
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Co	ntrol bit			
		nc pulse input (nc pulse output	· /				
bit 13	FRMPOL: Fra	ame Sync Puls	e Polarity bit				
	1 = Frame sy	nc pulse is acti	ve-high				
	0 = Frame sy	nc pulse is acti	ve-low				
bit 12-2	Unimplemen	ted: Read as '	0'				
bit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Selec	t bit			
	1 = Frame sy	nc pulse coinci	des with first	bit clock			
		nc pulse prece					
bit 0	Unimplemen	ted: This bit m	ust not be se	t to '1' by the u	ser application		

REGISTER 1	7-3: I2CxN	ISK: I2Cx SL	AVE MODE		MASK REGIS	TER	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
			_		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

	— R/W-0 1:0>	— R/W-0		R/W-0 BRF		R/W-0	bit a
R/W-0 SJW<	-	R/W-0	R/W-0	-	-	R/W-0	
SJW<	-	R/W-0	R/W-0	-	-	R/W-0	R/W-0
	1:0>			BRF	P<5:0>		
bit 7							
							bit
Legend:							
R = Readable b	oit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimplement	ted: Read as 'o)'				
bit 7-6	SJW<1:0>: S	ynchronization	Jump Width	bits			
	11 = Length is						
	10 = Length is						
	01 = Length is 00 = Length is						
	•	aud Rate Pres	color bite				
		$Q = 2 \times 64 \times 1/F$					
	•	J = Z X 04 X 1/1	CAN				
	•						
	•						
		2 = 2 x 3 x 1/Fo 2 = 2 x 2 x 1/Fo					

00 0000 = TQ = 2 x 1 x 1/FCAN

REGISTER 19-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CiRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

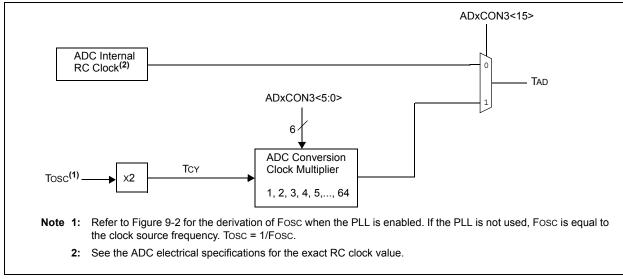
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXFUL31	JL31 RXFUL30 RXFUL29 RXFUL28		RXFUL27	RXFUL26	RXFUL25	RXFUL24			
bit 15 bit t									

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL23	JL23 RXFUL22 RXFUL21 RXFUL20		RXFUL19	RXFUL18	RXFUL17	RXFUL16	
bit 7							bit 0

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXFUL<31:16>: Receive Buffer n Full bits


1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPR	21<1:0>				
bit 15							bit				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 6	0 = Buffer TR TXABTm: Me 1 = Message		buffer I bit ⁽¹⁾								
bit 5	TXLARBm: 1 = Message	completed tran Message Lost A lost arbitration did not lose and	Arbitration bit ^{(*} while being se	i) ent							
bit 4	TXERRm: End 1 = A bus error	rror Detected D or occurred wh or did not occu	ouring Transmi ile the messag	ssion bit ⁽¹⁾ Je was being s							
bit 3	TXREQm: M Setting this bi	lessage Send F it to '1' request	Request bit s sending a m	essage. The b	it will automatica		the messag				
bit 2		uto-Remote Tra	-								
		emote transmit emote transmit									
bit 1-0	TXmPRI<1:0	TXmPRI<1:0>: Message Transmission Priority bits									
		message priori ermediate mes									

Note 1: This bit is cleared when TXREQ is set.

REGISTER 2		IS123: ADCx			3 SEL ECT P	FGISTEP		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
			– – – CH123I			NB<1:0>	CH123SB	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
	CH123NA<1:0>						CH123SA	
bit 7					011120	10/(*1.0*	bit C	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unk	nown	
bit 8	11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: CH When AD12E 1 = CH1 posit	B = 1, CHxNB is gative input is A gative input is A 42, CH3 negative nannel 1, 2, 3 P B = 1, CHxSB is ive input is ANG ive input is ANG	N9, CH2 nega N6, CH2 nega /e input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive	ative input is A ative input is A F- Select for Sam I emented, Re e input is AN4	N10, CH3 neg N7, CH3 nega ple B bit ead as '0' , CH3 positive	tive input is AN		
bit 7-3	Unimplemen	ted: Read as 'o)'					
bit 2-1	CH123NA<1:	0>: Channel 1,	2, 3 Negative	Input Select f	or Sample A bi	its		
bit 0	 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit 							
	When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2							

24.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

24.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost-effective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

TABLE 25-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions		
SY10	TMCL	MCLR Pulse-Width (low)	2	—	_	μs	-40°C to +85°C		
SY11	TPWRT	Power-up Timer Period		2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable		
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_		
SY20	Twdt1	Watchdog Timer Time-out Period	—	_		—	See Section 22.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 25-19)		
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	—	—	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERIS	TICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic			Min	Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous, no prescaler Synchronous, with prescaler		0.5 Tcy + 20		_	ns	Must also meet parameter TB15
					10	_	—	ns	
TB11	TtxL	TxCK Low Time	Synchronous, no prescaler		0.5 TCY + 20	_	—	ns	Must also meet parameter TB15
			Synchron with pres		10	_	—	ns	
TB15	TtxP	TxCK Input Period	Synchron no presc		TCY + 40	_	—	ns	N = prescale value
			Synchron with pres		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Extern Edge to Timer Inci		lock	0.5 TCY	_	1.5 TCY		—

TABLE 25-24: TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERIST	rics	(ui	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characte	eristic	Min	Тур	Max	Units	Conditions	
TC10	TtxH	TxCK High Time	Synchronou	us 0.5 TCY + 2	0 —		ns	Must also meet parameter TC15	
TC11	TtxL	TxCK Low Time	Synchronou	us 0.5 Tcy + 2	0 —	-	ns	Must also meet parameter TC15	
TC15	TtxP	TxCK Input Period	Synchronou no prescale	,	-	—	ns	N = prescale value	
			Synchronou with prescal					(1, 8, 64, 256)	
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		k 0.5 Tcy	_	1.5 Тсү	_	—	

TABLE 25-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

	ARACTER	ISTICS		(unless otherwise	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	_		
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽²⁾	40		ns			
IM26	126 THD:DAT	Data Input	100 kHz mode	0	_	μs	_		
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0.2	_	μs			
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	After this period the		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	—		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns			
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—		
		From Clock	400 kHz mode	—	1000	ns	—		
			1 MHz mode ⁽²⁾		400	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3	—	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can start		
	1	Bus Capacitive L	•		400	pF			

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" in the "*dsPIC33F Family Reference Manual*".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).