

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp206-i-pt

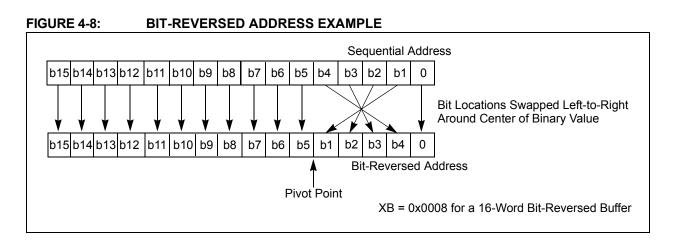
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

This document contains device specific information for the following devices:


- dsPIC33FJ64GP206
- dsPIC33FJ64GP306
- dsPIC33FJ64GP310
- dsPIC33FJ64GP706
- dsPIC33FJ64GP708
- dsPIC33FJ64GP710
- dsPIC33FJ128GP206
- dsPIC33FJ128GP306
- dsPIC33FJ128GP310
- dsPIC33FJ128GP706
- dsPIC33FJ128GP708
- dsPIC33FJ128GP710
- dsPIC33FJ256GP506
- dsPIC33FJ256GP510
- dsPIC33FJ256GP710

The dsPIC33FJXXXGPX06/X08/X10 General Purpose Family of device includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes). This feature makes the family suitable for a wide variety of high-performance digital signal control applications. The device is pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows for easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.

The dsPIC33FJXXXGPX06/X08/X10 device family employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control.

The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together provide the dsPIC33FJXXXGPX06/X08/X10 Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXGPX06/X08/X10 devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXGPX06/X08/X10 devices.

Figure 1-1 illustrates a general block diagram of the various core and peripheral modules in the dsPIC33FJXXXGPX06/X08/X10 family of devices. Table 1-1 provides the functions of the various pins illustrated in the pinout diagrams.

Normal Address						Bit-Reversed Address					
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal		
0	0	0	0	0	0	0	0	0	0		
0	0	0	1	1	1	0	0	0	8		
0	0	1	0	2	0	1	0	0	4		
0	0	1	1	3	1	1	0	0	12		
0	1	0	0	4	0	0	1	0	2		
0	1	0	1	5	1	0	1	0	10		
0	1	1	0	6	0	1	1	0	6		
0	1	1	1	7	1	1	1	0	14		
1	0	0	0	8	0	0	0	1	1		
1	0	0	1	9	1	0	0	1	9		
1	0	1	0	10	0	1	0	1	5		
1	0	1	1	11	1	1	0	1	13		
1	1	0	0	12	0	0	1	1	3		
1	1	0	1	13	1	0	1	1	11		
1	1	1	0	14	0	1	1	1	7		
1	1	1	1	15	1	1	1	1	15		

Flag Bit	Setting Event	Clearing Event					
TRAPR (RCON<15>)	Trap conflict event	POR, BOR					
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR					
EXTR (RCON<7>)	MCLR Reset	POR					
SWR (RCON<6>)	RESET instruction	POR, BOR					
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR					
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR					
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR					
BOR (RCON<1>)	BOR, POR	—					
POR (RCON<0>)	POR	-					

TABLE 6-1:RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2:OSCILLATOR SELECTION VSTYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are <u>summarized</u> in Table 6-3. The system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

REGISTER 7	-4: INTCC	N2: INTERF		ROL REGIST	ER 2			
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	—	_	_		_	—	
bit 15			÷				bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 14 bit 13-5 bit 4 bit 3	0 = Use stand DISI: DISI In 1 = DISI inst 0 = DISI inst Unimplemen INT4EP: Exte 1 = Interrupt o INT3EP: Exte 1 = Interrupt o	on negative ec on positive ed	vector table us bit ve active '0' 4 Edge Detect lge ge 3 Edge Detect lge	Polarity Select Polarity Select				
bit 2	1 = Interrupt of	ernal Interrupt on negative ec on positive edg	lge	Polarity Select	t bit			
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge							
bit 0	1 = Interrupt	ernal Interrupt on negative ec on positive ed	lge	Polarity Select	t bit			

11.0									
U-0	R/W-0 R/W-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0	
 bit 15	DMA1IE AD1IE	U1TXIE	U1RXIE		SPI1IE		SPI1EIE	T3IE bit 8	
								DILC	
R/W-0	R/W-0 R/W-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0	
T2IE	- 1	DMA0IE	T1IE		OC1IE		IC1IE	INT0IE	
bit 7								bit (
Legend:									
R = Readable	e bit W = Writable bit		U = Unimple	emer	nted bit, rea	ad a	is '0'		
-n = Value at	POR '1' = Bit is set		'0' = Bit is c	leare	ed	>	<pre>c = Bit is unkn</pre>	own	
L:4 / F	Unimplemented: Deed op (o)								
bit 15	Unimplemented: Read as '0'	Transform			En abla bii				
bit 14	DMA1IE: DMA Channel 1 Data 1 = Interrupt request enabled	Transfer C	omplete inte	rrupt	Enable bit				
	0 = Interrupt request not enable	ed							
bit 13	AD1IE: ADC1 Conversion Com		upt Enable b	it					
	1 = Interrupt request enabled								
	0 = Interrupt request not enable								
bit 12	U1TXIE: UART1 Transmitter In	terrupt Ena	ble bit						
	1 = Interrupt request enabled0 = Interrupt request not enable)d							
bit 11	U1RXIE: UART1 Receiver Inter	rupt Enable	e bit						
	 I = Interrupt request enabled Interrupt request not enabled 								
bit 10	SPI1IE: SPI1 Event Interrupt E								
	1 = Interrupt request enabled								
	0 = Interrupt request not enable	ed							
bit 9	SPI1EIE: SPI1 Error Interrupt E	nable bit							
	1 = Interrupt request enabled								
	0 = Interrupt request not enable								
bit 8	T3IE: Timer3 Interrupt Enable b	lit							
	 I = Interrupt request enabled 0 = Interrupt request not enabled 								
bit 7	T2IE: Timer2 Interrupt Enable b								
	1 = Interrupt request enabled								
	0 = Interrupt request not enable								
bit 6	OC2IE: Output Compare Channel 2 Interrupt Enable bit								
	 1 = Interrupt request enabled 0 = Interrupt request not enable 	h							
bit 5	IC2IE: Input Capture Channel 2		nable bit						
	1 = Interrupt request enabled								
	0 = Interrupt request not enable	ed .							
bit 4	DMA0IE: DMA Channel 0 Data	Transfer C	omplete Inte	rrupt	Enable bit				
	 1 = Interrupt request enabled 0 = Interrupt request not enable 	ed							
bit 3	T1IE: Timer1 Interrupt Enable b								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T6IP<2:0>		_		DMA4IP<2:0>					
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
—	—	_	—	—		OC8IP<2:0>					
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	Unimplemen	ited: Read as 'o)'								
bit 14-12	T6IP<2:0>: ⊺	ïmer6 Interrupt	Priority bits								
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	•										
	•										
		pt is priority 1 pt source is dis	abled								
bit 11	Unimplemen	ited: Read as 'o)'								
bit 10-8	DMA4IP<2:0	>: DMA Chann	el 4 Data Trar	nsfer Complete	Interrupt Prior	ity bits					
	DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	• 001 = Interrupt is priority 1										
		pt source is dis	abled								
bit 7-3	Unimplemen	ted: Read as ')'								
bit 2-0	OC8IP<2:0>:	: Output Compa	re Channel 8	Interrupt Prior	ity bits						
	111 = Interru	OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interru	pt is priority 1									

U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U1EIP<2:0>	REGISTER	7-31: IPC16	: INTERRUP1		CONTROL	REGISTER 1	6			
bit 15 bit 15 bit 15 bit 15 bit 15 bit 15 bit 7 bit 15 bit 10-8 U2EIP<2:0> 0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 7 bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 1 000 = Interrupt is priority 7 (highest priority interrupt) i f 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) i c c c c c c c c c c c c c c c c c c c	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U1EIP<2:0>		—	—	_	_		U2EIP<2:0>			
ulter ulter bit 7 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 . .001 = Interrupt source is disabled . bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits .111 = Interrupt is priority 7 (highest priority interrupt) 	bit 15							bit 8		
ulter ulter bit 7 ulter Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 . . .001 = Interrupt source is disabled 	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	_		U1EIP<2:0>		_	_	_	_		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' test is unknown x = Bit is unknown bit 15-11 Unimplemented: Read as '0' test is unknown x = Bit is unknown bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) . . 001 = Interrupt is priority 1 000 = Interrupt source is disabled . . bit 7 Unimplemented: Read as '0' . . . bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits . . 111 = Interrupt is priority 7 (highest priority interrupt) <td>bit 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>bit (</td>	bit 7							bit (
In a Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown x = Bit is	Legend:									
bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'			
bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
<pre>000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>	bit 10-8	111 = Interru • •	pt is priority 7 (l	•	•					
bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • •										
<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>	bit 7	Unimplemen	ited: Read as 'o	0'						
·	bit 6-4	111 = Interru • • 001 = Interru	pt is priority 7 (I pt is priority 1	highest priori	•					
	bit 3-0									

REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

8.0 DIRECT MEMORY ACCESS (DMA)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33F Family Reference Manual", which is available the Microchip from web site (www.microchip.com).

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJXXXGPX06/X08/X10 peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA SUPPORT

Peripheral	IRQ Number
INTO	0
Input Capture 1	1
Input Capture 2	5
Output Compare 1	2
Output Compare 2	6
Timer2	7
Timer3	8
SPI1	10
SPI2	33
UART1 Reception	11
UART1 Transmission	12
UART2 Reception	30
UART2 Transmission	31
ADC1	13
ADC2	21
DCI	60
ECAN1 Reception	34
ECAN1 Transmission	70
ECAN2 Reception	55
ECAN2 Transmission	71

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

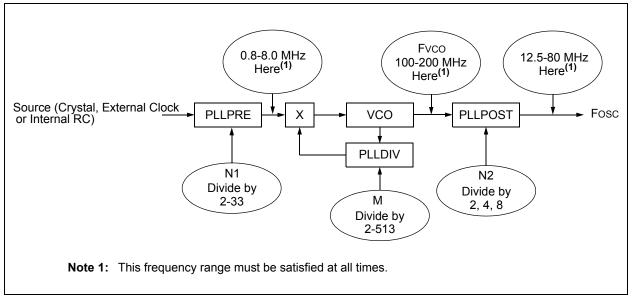
- · Word or byte sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- Automatic or manual initiation of block transfers
- Each channel can select from 20 possible sources of data sources or destinations.

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

^{© 2009} Microchip Technology Inc.

XT WITH PLL MODE

EXAMPLE


 $F_{CY} = \frac{F_{OSC}}{2} = \frac{1}{2} \left(\frac{1000000 \cdot 32}{2 \cdot 2} \right) = 40 \text{ MIPS}$

EQUATION 9-3:

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz range needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: dsPIC33FJXXXGPX06/X08/X10 PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXGPX06/X08/X10 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

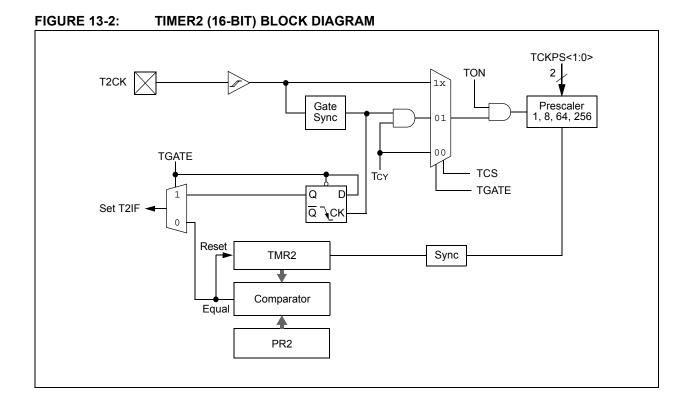
At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F Family Reference Manual" for details.


9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

REGISTER							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD		—	DCIMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15		⁻⁵ Module Disal					
		nodule is disable nodule is enable					
bit 14		4 Module Disa					
bit i i		nodule is disable					
	-	nodule is enable					
bit 13	T3MD: Timer	3 Module Disa	ble bit				
		nodule is disable					
		nodule is enable					
bit 12	_	2 Module Disa					
	-	odule is disable odule is enable					
bit 11		1 Module Disal					
	-	nodule is disable					
	-	odule is enable					
bit 10-9	Unimplemer	nted: Read as '	0'				
bit 8	DCIMD: DCI	Module Disable	e bit				
		ule is disabled ule is enabled					
bit 7	I2C1MD: I ² C	1 Module Disat	ole bit				
		dule is disabled dule is enabled					
bit 6	U2MD: UAR	T2 Module Disa	ble bit				
	1 = UART2 n	nodule is disabl	ed				
	0 = UART2 n	nodule is enable	ed				
bit 5	U1MD: UAR	T1 Module Disa	ible bit				
	-	nodule is disabl nodule is enabl					
bit 4		I2 Module Disa					
~	1 = SPI2 mo	dule is disabled					
bit 3		I1 Module Disa	ble bit				
		dule is disabled					
	0 = SPI1 mo	dule is enabled					
bit 2	C2MD: ECA	N2 Module Disa	able bit				
	-	nodule is disab					
	0 = ECAN2 n	nodule is enabl	ed				

© 2009 Microchip Technology Inc.

NOTES:

REGISTER 19-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	-	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
—	—	—			DNCNT<4:0>	>				
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as '	0'							
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits						
	10010-1111:	1 = Invalid sele	ection							
	10001 = Compare up to data byte 3, bit 6 with EID<17>									
	•									
	•									
	• 00001 = Con	nare un to dat	a hvto 1 hit 7	with EID<0>						
	00001 = Compare up to data byte 1, bit 7 with EID<0>									

00000 = Do not compare data bytes

REGISTER	19-20: CiRXN	InSID: ECAN	I™ ACCEP1		R MASK n S	TANDARD ID	ENTIFIER		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
SID2	SID1	SID0	_	MIDE		EID17	EID16		
bit 7							bit 0		
<u></u>									
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					
bit 15-5	1 = Include b	Standard Ident it SIDx in filter is don't care in	comparison	son					
bit 4	Unimplemer	ted: Read as '	ʻ0'						
bit 3	MIDE: Identi	fier Receive M	ode bit						
	0 = Match ei	ther standard of	or extended a	ddress messag	ddress) that co le if filters matcl /EID) = (Messa		DE bit in filter		
bit 2	Unimplemer	nted: Read as '	ʻ0'						
bit 1-0	EID<17:16>:	Extended Ider	ntifier bits						
		1 = Include bit EIDx in filter comparison							

0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x R/V	V-x R/W-x	R/W-x	R/W-x	R/W-x		D 444
			1000	rv/ VV-X	R/W-x	R/W-x
EID15 EID	D14 EID13	EID12	EID11	EID10	EID9	EID8
bit 15	· · · · · ·					bit 8
R/W-x R/V	V-x R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7 EII	D6 EID5	EID4	EID3	EID2	EID1	EID0
bit 7	·					bit 0
Legend:						

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 19-29:	CiTRBnDLC: ECAN™	' BUFFER n DATA LEN	GTH CONTROL (r	n = 0, 1,, 31)
-----------------	------------------	---------------------	----------------	----------------

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	RB0	DLC3	DLC2	DLC1	DLC0

bit 7				bit 0
[
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

REGISTER 19-30: CiTRBnDm: ECAN™ BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)⁽¹⁾

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRBnDm<7:0>: Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other

analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details.

A block diagram of the ADC is shown in Figure 21-1.

21.2 ADC Initialization

The following configuration steps should be performed.

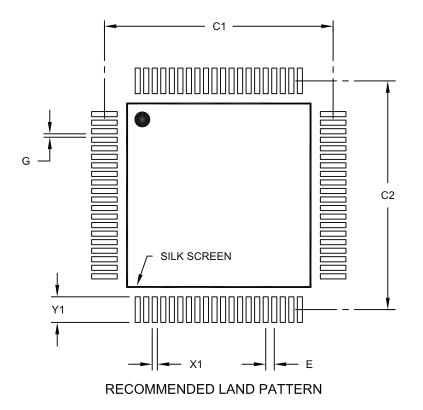
- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit
 - b) Select ADC interrupt priority

21.3 ADC and DMA

2.

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.


The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh
		 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 22-2: dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

dsPIC 33 FJ 256 GP7 10 T I / PT - XXX Microchip Trademark		Examples: a) dsPIC33FJ256GP710I/PT: General-purpose dsPIC33, 64 KB program memory, 100-pin, Industrial temp., TQFP package.
Package		
Pattern		
Architecture:	33 = 16-bit Digital Signal Controller	
Flash Memory Family:	FJ = Flash program memory, 3.3V	
Product Group:	GP2=General purpose familyGP3=General purpose familyGP5=General purpose familyGP7=General purpose family	
Pin Count:	06 = 64-pin 08 = 80-pin 10 = 100-pin	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flatpack) PF = 14x14 mm TQFP (Thin Quad Flatpack)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)	
	ES = Engineering Sample	