

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp310t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.2 Data Address Space

The dsPIC33FJXXXGPX06/X08/X10 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXGPX06/X08/X10 devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJXXXGPX06/X08/X10 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXGPX06/X08/X10 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 4-1 through Table 4-34.

Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

					•		,											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XBREV	0050	BREN							2	XB<14:0>								xxxx
DISICNT	0052	_	_						Disable	e Interrupts	Counter R	egister						xxxx
BSRAM	0750	_	_	_	_	_	_	_	_	—	_	_	_	—	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	-	_	_	_	_	—		—	_	—	-	—	IW_SSR	IR_SSR	RL_SSR	0000
			_															

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX10 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	_	_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	-			_	-	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX08 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	—	—	_	_	_	_	_	_	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX06 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	_	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	_	CN18PUE	CN17PUE	CN16PUE	0000

TABLE 4-	-8: 0	OUTPU [.]	т сом	PARE F	REGIST	ER MA	P											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Ou	tput Compa	re 1 Second	lary Register							xxxx
OC1R	0182								Output C	ompare 1 R	egister							xxxx
OC1CON	0184		—	OCSIDL		_		—	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Ou	tput Compa	re 2 Second	lary Register							xxxx
OC2R	0188								Output C	ompare 2 R	egister							xxxx
OC2CON	018A	—	—	OCSIDL		_	_	—	_	-	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Ou	tput Compa	re 3 Second	lary Register							xxxx
OC3R	018E								Output C	ompare 3 R	egister							xxxx
OC3CON	0190	_	—	OCSIDL	—	_	_	—	_	_	_	—	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Ou	tput Compa	re 4 Second	lary Register							xxxx
OC4R	0194								Output C	ompare 4 R	egister							xxxx
OC4CON	0196	_	—	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC5RS	0198							Ou	tput Compa	re 5 Second	lary Register							xxxx
OC5R	019A								Output C	ompare 5 R	egister							xxxx
OC5CON	019C	_	—	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC6RS	019E							Ou	tput Compa	re 6 Second	lary Register							xxxx
OC6R	01A0								Output C	ompare 6 R	egister							xxxx
OC6CON	01A2	_	—	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC7RS	01A4							Ou	tput Compa	re 7 Second	lary Register							xxxx
OC7R	01A6								Output C	ompare 7 R	egister							xxxx
OC7CON	01A8	_	—	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC8RS	01AA							Ou	tput Compa	re 8 Second	lary Register							xxxx
OC8R	01AC								Output C	ompare 8 R	egister							xxxx
OC8CON	01AE		—	OCSIDL		—	—	—	—	_	_		OCFLT	OCTSEL		OCM<2:0>		0000

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXGP706/708/710 DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500							Se	e definitior	n when WIN	= x							
	- 051E																	
C2BUFPNT1	0520		F3BF	P<3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BF	P<3:0>		0000
C2BUFPNT2	0522		F7BF	P<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BF	P<3:0>		0000
C2BUFPNT3	0524		F11B	P<3:0>			F10BI	P<3:0>			F9BP	<3:0>			F8BF	P<3:0>		0000
C2BUFPNT4	0526		F15B	P<3:0>			F14Bl	P<3:0>			F13BF	P<3:0>			F12B	P<3:0>		0000
C2RXM0SID	0530				SID<	10:3>					SID<2:0>		_	MIDE	—	EID<'	17:16>	xxxx
C2RXM0EID	0532				EID<	15:8>							EID	<7:0>				xxxx
C2RXM1SID	0534				SID<	10:3>					SID<2:0>		_	MIDE	—	EID<'	17:16>	xxxx
C2RXM1EID	0536				EID<	15:8>							EID	<7:0>				xxxx
C2RXM2SID	0538				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C2RXM2EID	053A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF0SID	0540				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF0EID	0542				EID<	15:8>							EID	<7:0>				xxxx
C2RXF1SID	0544				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF1EID	0546				EID<	15:8>							EID	<7:0>				xxxx
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF2EID	054A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF3SID	054C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF3EID	054E				EID<	15:8>							EID	<7:0>				xxxx
C2RXF4SID	0550				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF4EID	0552				EID<	15:8>							EID	<7:0>		_		xxxx
C2RXF5SID	0554				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF5EID	0556				EID<	15:8>							EID	<7:0>				xxxx
C2RXF6SID	0558				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF6EID	055A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF7SID	055C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF7EID	055E				EID<	15:8>							EID	<7:0>		_		xxxx
C2RXF8SID	0560				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF8EID	0562	2 EID<15:8> EID<7:0>													xxxx			
C2RXF9SID	0564				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF9EID	0566				EID<	15:8>							EID	<7:0>				xxxx
C2RXF10SID	0568				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx

dsPIC33FJXXXGPX06/X08/X10

TABLE 4-27: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	—	LATC4	LATC3	LATC2	LATC1	—	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-28: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTE REGISTER MAP⁽¹⁾

	-	-		-														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	_	_	-	_	_	_	—	-	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	OOFF
PORTE	02DA	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	—	—	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	-	—	TRISF13	TRISF12	-	-	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	—	—	RF13	RF12	_	—	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	_	LATF13	LATF12	_	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE	_	_	ODCF13	ODCF12	_	_	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

FIGURE 7-1.	
FIGURE /-I.	USPICJJFJAAAGPAU0/AU0/AIU INTERRUPT VECTOR TADLE

	Reset – GOTO Instruction	0x000000	
	Reset – COTO Address	0x0000002	
	Reserved	0x000002	
	Oscillator Fail Tran Vector	0,000004	
	Address Error Trap Vector	-	
	Stack Error Trap Vector	-	
	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	DiviA Elitor Trap vector	-	
	Reserved	_	
		02000014	1
		0000014	
		_	
	~	_	
	~	_	
		0.000070	
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
>	Interrupt Vector 53	0x00007E	
orit	interrupt vector 54	0x000080	
Pric	~	-	
er	~	_	
Drd			
al	Interrupt Vector 117		l
tura		0x0000FE	
Nai	Reserved	0x000100	
b	Reserved	0x000102	
asir	Reserved	_	
crea	Oscillator Fall Trap Vector	-	
)ec	Address Error Trap Vector	-	
	Stack Error Trap Vector	-	
	DMA Error Trap Vector	-	
	DIMA EITOI Trap vector		1
	Reserved	-	
	Reserved	0,000114	
		0000114	
		-	
	~	-	
	~	-	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrunt Vector 52	0x00017C	
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 54	0x000172	
		0,000100	
	~	-	
	~	-	
	Interrupt Vector 116		1
	Interrupt Vector 117	0x0001FF	
♥	Start of Code	0x000200	
•		0.000200	

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T4IP<2:0>		—		OC4IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		OC3IP<2:0>		—		DMA2IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable I	bit	U = Unimplei	mented bit, rea	id as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	Unimanlama	nted. Dood oo '	,								
bit 14 12		Timor4 Interrupt	Priority bite								
DIL 14-12	111 = Intern	unt is priority 7 (t	niahest priori	ity interrunt)							
	•		ingricot priori	ity interrupt)							
	•										
	• 001 - Interr	unt in priority 1									
	001 - Intern	upt is priority i upt source is disa	abled								
bit 11	Unimpleme	nted: Read as 'o)'								
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interr	001 = Interrupt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 7	Unimpleme	nted: Read as 'd)'								
bit 6-4	OC3IP<2:0>	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits									
	111 = Interr	upt is priority 7 (I	nighest priori	ity interrupt)							
	•										
	•										
	001 = Intern 000 = Intern	upt is priority 1 upt source is disa	abled								
bit 3	Unimpleme	nted: Read as 'o)'								
bit 2-0	DMA2IP<2:	0>: DMA Channe	el 2 Data Tra	ansfer Complete	e Interrupt Prior	rity bits					
	111 = Interr	upt is priority 7 (I	nighest priori	ity interrupt)							
	•										
	•										
	001 = Interr	upt is priority 1									
	000 = Interr	upt source is disa	abled								

REGISTER 9-	1: OSCC	ON: OSCILL	ATOR CON	TROL REGIS	STER ⁽¹⁾		
U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
		COSC<2:0>				NOSC<2:0> ⁽²⁾	
bit 15							bit 8
D/M/ O	11.0	P 0	11.0		11.0	D/M/ O	
	0-0		0-0		0-0		
bit 7	_	LUCK		UF		LFUSCEN	bit 0
Legend:		y = Value set	from Configur	ation bits on P	OR		
R = Readable b	bit	W = Writable	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only)		
	001 = Fast R 010 = Primar 011 = Primar 100 = Second 101 = Low-Pc 110 = Fast R 111 = Fast R	C oscillator (FR y oscillator (XT, y oscillator (XT, dary oscillator (ower RC oscillator C oscillator (FR C oscillator (FR	C) with PLL HS, EC) HS, EC) with SOSC) tor (LPRC) C) with Divid	n PLL e-by-16 e-by-n			
bit 11	Unimplemen	ted: Read as 'd)'				
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾ 000 = Fast RC oscillator (FRC) 001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (XT, HS, EC) with PLL 100 = Secondary oscillator (SOSC) 101 = Low-Power RC oscillator (LPRC) 110 = Fast RC oscillator (FRC) with Divide-by-16 110 = Fast RC oscillator (FRC) with Divide-by-16						
bit 7	CLKLOCK: C	Clock Lock Enal	ole bit				
	1 = If (FCKSI If (FCKSI 0 = Clock and	M0 = 1), then c M0 = 0), then c d PLL selection	lock and PLL lock and PLL is are not lock	configurations configurations (ed, configurati	are locked may be mod ions may be r	ified nodified	
bit 6	Unimplemen	ted: Read as 'o)'				
bit 5	LOCK: PLL L	ock Status bit (read-only)				
	1 = Indicates 0 = Indicates	that PLL is in I that PLL is out	ock, or PLL s of lock, start	tart-up timer is -up timer is in p	satisfied progress or P	LL is disabled	
bit 4	Unimplemen	ted: Read as 'o)'				
bit 3	CF: Clock Fai	il Detect bit (rea	ad/clear by ap	plication)			
	1 = FSCM has 0 = FSCM has 1 =	as detected cloo as not detected	ck failure clock failure				
bit 2	Unimplemen	ted: Read as 'o)'				
Note 1: Wri "ds	tes to this reg PIC33F Family	ister require ar / Reference Ma	n unlock sequ Inual" (availal	ience. Refer to ble from the Mi	o Section 7. crochip webs	" Oscillator " (DS7 ite) for details.	70186) in the

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

FIGURE 13-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM⁽¹⁾

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
	_	ICSIDL	—	—	—	—		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0	
ICTMR(")	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown	
bit 15-14	Unimplement	ted: Read as 'o)'					
bit 13	ICSIDL: Input	Capture Modu	le Stop in Idle	e Control bit				
	1 = Input capt	ure module wil	I halt in CPU	Idle mode				
	0 = Input capt	ure module wil	l continue to c	operate in CPU	J Idle mode			
bit 12-8	Unimplement	ted: Read as ')' 					
bit /		Capture Timer	Select bits("	ra avant				
	0 = TMR3 con	itents are capti	ured on captu	re event				
bit 6-5	ICI<1:0>: Sele	ect Number of	Captures per	Interrupt bits				
	11 = Interrupt	on every fourt	h capture eve	nt				
	10 = Interrupt	on every third	capture even	t				
	01 = Interrupt 00 = Interrupt	on every seco	na capture ev ire event	ent				
bit 4	ICOV: Input C	apture Overflo	w Status Flag	bit (read-only)			
	1 = Input capt	ure overflow of	ccurred		/			
	0 = No input c	apture overflow	w occurred					
bit 3	ICBNE: Input	Capture Buffer	Empty Status	s bit (read-only	/)			
	1 = Input capt	ure buffer is no ure buffer is er	ot empty, at le nptv	ast one more o	capture value c	an be read		
bit 2-0	ICM<2:0>: Ing	out Capture Mo	de Select bits	6				
	111 = Input ca	apture function	s as interrupt	pin only when	device is in Sle	eep or Idle mode	e	
	(Rising	edge detect o	nly, all other o	control bits are	not applicable.)		
	110 = Unused (module disabled)							
	100 = Capture mode, every 4th rising edge							
	011 = Capture	e mode, every	rising edge					
	010 = Capture	e mode, every	falling edge	nd folling)				
		or the second s second second sec	control interru	pt generation	for this mode.)			
	000 = Input ca	apture module	turned off					

Note 1: Timer selections may vary. Refer to the device data sheet for details.

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 I = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

REGISTER	21-2: ADxCON2: A	DCx CONTROL F	REGISTER 2	(where x = 1	or 2)	
R/W-0	R/W-0 R/	N-0 U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>	_	_	CSCNA	CHPS<	:1:0>
bit 15						bit 8
P 0					D/M/ O	
	0-0 K/		R/W-U	R/W-U	R/W-U	
bit 7	—	51011	-1<3.0>		BUFINI	ALTS bit C
Logondy						
Legenu:	$\Delta = \frac{1}{2}$	/ritable bit		mented bit wee		
R = Readable	$e \ Dit \qquad vv = vv$			mented bit, rea		
-n = Value at	POR '1' = B	it is set	0' = Bit is cle	eared	x = Bit is unkno	own
bit 15-13	VCFG<2:0>: Conver	ter Voltage Referenc	e Configuration	bits		
	VREF+	VREF-				
	000 Avdd	Avss				
	001 External VRE	F+ Avss				
	010 AVDD	External VREF	-			
	011 External VRE	F+ External VREF	-			
	1xx AVDD	Avss				
bit 12-11	Unimplemented: Re	ad as '0'				
bit 10	CSCNA: Scan Input	Selections for CH0+	during Sample	A bit		
	1 = Scan inputs					
	0 = Do not scan inpu	its				
bit 9-8	CHPS<1:0>: Selects	Channels Utilized bi	ts			
	When AD12B = 1, C 1x = Converts CH0, 01 = Converts CH0 00 = Converts CH0	HPS<1:0> is: U-0, L CH1, CH2 and CH3 and CH1	Inimplemented	l, Read as '0'		
bit 7	BUFS: Buffer Fill Sta	tus bit (only valid wh	en BUFM = 1)			
	1 = ADC is currently 0 = ADC is currently	filling second half of filling first half of buf	buffer, user sho fer. user should	ould access dat access data in	a in first half second half	
bit 6	Unimplemented: Re	ad as '0'	-,			
bit 5-2	SMPI<3:0>: Selects	Increment Rate for D	MA Addresses	bits or number	of sample/conve	ersion
	1111 = Increments	the DMA address	or generates	interrupt after	completion of	every 16th
	sample/conv 1110 = Increments	ersion operation the DMA address	or generates	interrupt after	completion of	every 15th
	• •					
	• 0001 = Increments	the DMA address	or generates	interrupt after	completion of	every 2nd
	sample/conve 0000 = Increments sample/conve	ersion operation the DMA address ersion operation	s or generate	es interrupt a	after completion	of every
bit 1	BUFM: Buffer Fill Mo	de Select bit				
	1 = Starts filling first0 = Always starts filli	half of buffer on first ng buffer from the be	interrupt and se ginning	econd half of the	e buffer on next i	nterrupt
bit 0	ALTS: Alternate Inpu	t Sample Mode Sele	ct bit			
	1 = Uses channel in0 = Always uses cha	out selects for Sampl innel input selects fo	le A on first san r Sample A	ple and Sampl	e B on next sam	ple

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh
		 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 22-2: dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION

24.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

24.12 PICkit 2 Development Programmer

The PICkit 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

24.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

TABLE 25-35: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristic ^(1,2)	Min	Тур ⁽³⁾	Max	Units	Conditions	
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	—	
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	—	
CS62	TBCLK	BIT_CLK Period		81.4		ns	Bit clock is input	
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	_	10	ns	_	
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	_	10	ns	_	
CS70	TSYNCLO	SYNC Data Output Low Time		19.5		μs	See Note 1	
CS71	TSYNCHI	SYNC Data Output High Time		1.3		μs	See Note 1	
CS72	TSYNC	SYNC Data Output Period	_	20.8	_	μs	See Note 1	
CS75	TRACL	Rise Time, SYNC, SDATA_OUT		10	25	ns	Cload = 50 pF, Vdd = 5V	
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	_	10	25	ns	Cload = 50 pF, Vdd = 5V	
CS77	TRACL	Rise Time, SYNC, SDATA_OUT	_	—	30	ns	CLOAD = 50 pF, VDD = 3V	
CS78	TFACL	Fall Time, SYNC, SDATA_OUT		—	30	ns	CLOAD = 50 pF, VDD = 3V	
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	_	—	15	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CH	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions			
	ADC Accuracy (10-bit Mode) - Measurements with external VREF+/VREF-									
AD20b	Nr	Resolution	1	0 data bi	ts	bits				
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD22b	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD25b	—	Monotonicity ⁽¹⁾	_		_	_	Guaranteed			
		ADC Accuracy (10-bit Mod	de) - Measur	ements	with interna	I VREF+	/VREF-			
AD20b	Nr	Resolution	1	0 data bi	ts	bits				
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD25b	—	Monotonicity ⁽¹⁾	—	_	_	—	Guaranteed			
		Dynamic	Performan	ce (10-bi	it Mode)					
AD30b	THD	Total Harmonic Distortion	—	-64	-67	dB	—			
AD31b	SINAD	Signal to Noise and Distortion	—	57	58	dB	_			
AD32b	SFDR	Spurious Free Dynamic Range	_	60	62	dB	_			
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—			
AD34b	ENOB	Effective Number of Bits	9.1	9.7	9.8	bits	_			

TABLE 25-39: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX			
Number of Leads	Ν	100					
Lead Pitch	е		0.50 BSC				
Overall Height	А	-	—	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	φ	0°	3.5°	7°			
Overall Width	Е		16.00 BSC				
Overall Length	D		16.00 BSC				
Molded Package Width	E1		14.00 BSC				
Molded Package Length	D1	14.00 BSC					
Lead Thickness	С	0.09 – 0.20					
Lead Width	b	0.17	0.22	0.27			
Mold Draft Angle Top	α	11° 12° 13°					
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B