Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |---------------------------|---------------------------------------------------------------------------------| | | Ashive | | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | Speed | 40 MIPs | | Connectivity | CANbus, I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT | | Number of I/O | 53 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EPROM Size | - | | RAM Size | 16K x 8 | | oltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 18x10b/12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-TQFP | | Supplier Device Package | 64-TQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp706-i-pt | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### 3.0 CPU Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The dsPIC33FJXXXGPX06/X08/X10 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The dsPIC33FJXXXGPX06/X08/X10 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls. The dsPIC33FJXXXGPX06/X08/X10 instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJXXXGPX06/X08/X10 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle. A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJXXXGPX06/X08/X10 is shown in Figure 3-2. ### 3.1 Data Addressing Overview The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific. Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM. ### 3.2 DSP Engine Overview The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space. ### 3.3 Special MCU Features The dsPIC33FJXXXGPX06/X08/X10 features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJXXXGPX06/X08/X10 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data. A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions. ### 4.2 Data Address Space The dsPIC33FJXXXGPX06/X08/X10 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility"). dsPIC33FJXXXGPX06/X08/X10 devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned. #### 4.2.1 DATA SPACE WIDTH The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses. ## 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT To maintain backward compatibility with PIC® MCU devices and improve data space memory usage efficiency, the dsPIC33FJXXXGPX06/X08/X10 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations. Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault. All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified. A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address. #### 4.2.3 SFR SPACE The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXGPX06/X08/X10 core and peripheral modules for controlling the operation of the device. SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 4-1 through Table 4-34. **Note:** The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information. #### 4.2.4 NEAR DATA SPACE The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer. FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES WITH 8 KBS RAM #### RCON: RESET CONTROL REGISTER⁽¹⁾ **REGISTER 6-1:** | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | |--------|--------|-----|-----|-----|-----|-----|-------| | TRAPR | IOPUWR | _ | _ | _ | _ | _ | VREGS | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-1 | R/W-1 | |-------|-------|-----------------------|-------|-------|-------|-------|-------| | EXTR | SWR | SWDTEN ⁽²⁾ | WDTO | SLEEP | IDLE | BOR | POR | | bit 7 | | | | | | | bit 0 | Legend: bit 6 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared -n = Value at POR x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit > 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit bit 14 1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Address Pointer caused a Reset 0 = An illegal opcode or uninitialized W Reset has not occurred Unimplemented: Read as '0' bit 13-9 bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep bit 7 **EXTR:** External Reset (MCLR) Pin bit > 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed **SWDTEN:** Software Enable/Disable of WDT bit⁽²⁾ bit 5 1 = WDT is enabled 0 = WDT is disabled WDTO: Watchdog Timer Time-out Flag bit bit 4 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode bit 1 **BOR:** Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset. 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting. ### REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED) bit 3 ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred bit 2 STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred bit 1 OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred0 = Oscillator failure trap has not occurred bit 0 **Unimplemented:** Read as '0' #### REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 | R/W-0 |--------|--------|--------|-------|-------|-------|-------|--------| | U2TXIE | U2RXIE | INT2IE | T5IE | T4IE | OC4IE | OC3IE | DMA2IE | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | |-------|-------|-------|--------|-------|-----|---------|---------| | IC8IE | IC7IE | AD2IE | INT1IE | CNIE | _ | MI2C1IE | SI2C1IE | | bit 7 | | | | | | | bit 0 | Legend: bit 11 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **U2TXIE:** UART2 Transmitter Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 14 **U2RXIE:** UART2 Receiver Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 13 INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 12 **T5IE:** Timer5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabledT4IE: Timer4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 9 OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 8 DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 7 IC8IE: Input Capture Channel 8 Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 6 IC7IE: Input Capture Channel 7 Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 5 AD2IE: ADC2 Conversion Complete Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 4 INT1IE: External Interrupt 1 Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled ### REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED) bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 1 SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled ### REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 | |--------|--------|--------|--------|-----|-------|-------|-------| | C2TXIE | C1TXIE | DMA7IE | DMA6IE | _ | U2EIE | U1EIE | _ | | bit 7 | | | | | | | bit 0 | Legend: bit 3 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 **Unimplemented:** Read as '0' bit 7 C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 6 C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 5 DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 4 DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit 1 = Interrupt request enabled 0 = Interrupt request not enabled Unimplemented: Read as '0' bit 2 **U2EIE:** UART2 Error Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 1 **U1EIE:** UART1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 **Unimplemented:** Read as '0' ### REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 | |--------|-------|-----------|-------|-----|-------|------------|-------| | _ | | T2IP<2:0> | | _ | | OC2IP<2:0> | | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 | |-------|-------|------------|-------|-----|-------|-------------|-------| | _ | | IC2IP<2:0> | | _ | | DMA0IP<2:0> | | | bit 7 | | | | | | | bit 0 | Legend: bit 7 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 **T2IP<2:0>:** Timer2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 **Unimplemented:** Read as '0' bit 10-8 OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' bit 6-4 IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 **Unimplemented:** Read as '0' bit 2-0 DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • . • 001 = Interrupt is priority 1 000 = Interrupt source is disabled #### REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 | |--------|-------|-----------|-------|-----|-------|------------|-------| | _ | | T4IP<2:0> | | _ | | OC4IP<2:0> | | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 | |-------|-------|------------|-------|-----|-------|-------------|-------| | _ | | OC3IP<2:0> | | _ | | DMA2IP<2:0> | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled ### REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) - bit 5 **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled bit 4 RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active bit 3 **PERR:** Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected bit 1 **OERR:** Receive Buffer Overrun Error Status bit (read/clear only) 1 = Receive buffer has overflowed $0 = \text{Receive buffer has not overflowed. Clearing a previously set OERR bit } (1 \rightarrow 0 \text{ transition}) \text{ will reset}$ the receiver buffer and the UxRSR to the empty state bit 0 URXDA: Receive Buffer Data Available bit (read-only) - **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for transmit operation. 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty ### REGISTER 19-1: CICTRL1: ECAN™ CONTROL REGISTER 1 | U-0 | U-0 | R/W-0 | R/W-0 | r-0 | R/W-1 | R/W-0 | R/W-0 | |--------|-----|-------|-------|-----|-------|------------|-------| | _ | _ | CSIDL | ABAT | _ | | REQOP<2:0> | | | bit 15 | | | | | | | bit 8 | | R-1 | R-0 | R-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | |-------|-------------|-----|-----|--------|-----|-----|-------| | | OPMODE<2:0> | | _ | CANCAP | _ | _ | WIN | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared r = Bit is Reserved bit 15-14 **Unimplemented:** Read as '0' bit 13 CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ABAT: Abort All Pending Transmissions bit Signal all transmit buffers to abort transmission. Module will clear this bit when all transmissions are aborted bit 11 Reserved: Do not use bit 10-8 **REQOP<2:0>:** Request Operation Mode bits 000 = Set Normal Operation mode 001 = Set Disable mode 010 = Set Loopback mode 011 = Set Listen Only Mode 100 = Set Configuration mode 101 = Reserved - do not use 110 = Reserved - do not use 111 = Set Listen All Messages mode bit 7-5 **OPMODE<2:0>:** Operation Mode bits 000 = Module is in Normal Operation mode 001 = Module is in Disable mode 010 = Module is in Loopback mode 011 = Module is in Listen Only mode 100 = Module is in Configuration mode 101 = Reserved 110 = Reserved 111 = Module is in Listen All Messages mode bit 4 **Unimplemented:** Read as '0' bit 3 CANCAP: CAN Message Receive Timer Capture Event Enable bit 1 = Enable input capture based on CAN message receive 0 = Disable CAN capture bit 2-1 **Unimplemented:** Read as '0' bit 0 WIN: SFR Map Window Select bit 1 = Use filter window 0 = Use buffer window ### REGISTER 19-10: CICFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2 | U-0 | R/W-x | U-0 | U-0 | U-0 | R/W-x | R/W-x | R/W-x | |--------|--------|-----|-----|-----|-------|-------------|-------| | _ | WAKFIL | _ | _ | _ | ; | SEG2PH<2:0> | | | bit 15 | | | | | | | bit 8 | | R/W-x |----------|-------|-------|-------------|-------|-------|------------|-------| | SEG2PHTS | SAM | ; | SEG1PH<2:0> | > | | PRSEG<2:0> | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up bit 13-11 **Unimplemented:** Read as '0' bit 10-8 **SEG2PH<2:0>:** Phase Buffer Segment 2 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 **SAM:** Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Buffer Segment 1 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ #### REGISTER 19-20: CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER | R/W-x |--------|-------|-------|-------|-------|-------|-------|-------| | SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 | | bit 15 | | | | | | | bit 8 | | R/W-x | R/W-x | R/W-x | U-0 | R/W-x | U-0 | R/W-x | R/W-x | |-------|-------|-------|-----|-------|-----|-------|-------| | SID2 | SID1 | SID0 | _ | MIDE | _ | EID17 | EID16 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID)) bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don't care in filter comparison ### REGISTER 19-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER | R/W-x |--------|-------|-------|-------|-------|-------|-------|-------| | EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 | | bit 15 | | | | | | | bit 8 | | R/W-x |-------|-------|-------|-------|-------|-------|-------|-------| | EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 **EID<15:0>:** Extended Identifier bits 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don't care in filter comparison #### 22.0 SPECIAL FEATURES Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "CodeGuard™ Security" (DS70199), Section 24. "Programming and Diagnostics" (DS70207), and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com). dsPIC33FJXXXGPX06/X08/X10 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are: - · Flexible Configuration - Watchdog Timer (WDT) - Code Protection and CodeGuard™ Security - · JTAG Boundary Scan Interface - In-Circuit Serial Programming™ (ICSP™) - In-Circuit Emulation ### 22.1 Configuration Bits The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000. The device Configuration register map is shown in Table 22-1. The individual Configuration bit descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD Configuration registers are shown in Table 22-2. Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFFF) which can only be accessed using table reads and table writes. The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation. To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled. TABLE 22-1: DEVICE CONFIGURATION REGISTER MAP | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |----------|---------|---------------------|-------------------------|--------|--------------|----------|----------|----------|---------| | 0xF80000 | FBS | RBS | S<1:0> | _ | _ | BSS<2:0> | | | BWRP | | 0xF80002 | FSS | RSS | S<1:0> | _ | _ | | SSS<2:0> | | SWRP | | 0xF80004 | FGS | _ | _ | _ | _ | _ | GSS1 | GSS0 | GWRP | | 0xF80006 | FOSCSEL | IESO | Reserved ⁽²⁾ | _ | _ | _ | FNC |)SC<2:0> | | | 0xF80008 | FOSC | FCKS | M<1:0> | _ | _ | _ | OSCIOFNC | POSCN | ID<1:0> | | 0xF8000A | FWDT | FWDTEN | WINDIS | _ | WDTPRE | | WDTPOST | <3:0> | | | 0xF8000C | FPOR | _ | _ | _ | _ | _ | FPV | VRT<2:0> | | | 0xF8000E | FICD | Rese | erved ⁽¹⁾ | JTAGEN | _ | _ | _ | ICS< | :1:0> | | 0xF80010 | FUID0 | | | - | User Unit ID | Byte 0 | | | | | 0xF80012 | FUID1 | User Unit ID Byte 1 | | | | | | | | | 0xF80014 | FUID2 | User Unit ID Byte 2 | | | | | | | | | 0xF80016 | FUID3 | | | | User Unit ID | Byte 3 | | | | Note 1: When read, these bits will appear as '1'. When you write to these bits, set these bits to '1'. 2: When read, this bit returns the current programmed value. All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP. Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles. **Note:** For more details on the instruction set, refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157). TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS | Description | | |-----------------------------------------------------------------------------------|--| | Means literal defined by "text" | | | Means "content of text" | | | Means "the location addressed by text" | | | Optional field or operation | | | Register bit field | | | Byte mode selection | | | Double-Word mode selection | | | Shadow register select | | | Word mode selection (default) | | | One of two accumulators {A, B} | | | Accumulator write back destination address register ∈ {W13, [W13]+ = 2} | | | 4-bit bit selection field (used in word addressed instructions) ∈ {015} | | | MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero | | | Absolute address, label or expression (resolved by the linker) | | | File register address ∈ {0x00000x1FFF} | | | 1-bit unsigned literal ∈ {0,1} | | | 4-bit unsigned literal ∈ {015} | | | 5-bit unsigned literal ∈ {031} | | | 8-bit unsigned literal ∈ {0255} | | | 10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode | | | 14-bit unsigned literal ∈ {016384} | | | 16-bit unsigned literal ∈ {065535} | | | 23-bit unsigned literal ∈ {08388608}; LSb must be '0' | | | Field does not require an entry, may be blank | | | DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate | | | Program Counter | | | 10-bit signed literal ∈ {-512511} | | | 16-bit signed literal ∈ {-3276832767} | | | 6-bit signed literal ∈ {-1616} | | | Base W register ∈ {W0W15} | | | Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] } | | | Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] } | | | Dividend, Divisor working register pair (direct addressing) | | | | | # 25.2 AC Characteristics and Timing Parameters The information contained in this section defines dsPIC33FJXXXGPX06/X08/X10 AC characteristics and timing parameters. TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) | |--------------------|-----------------------------------------------------------------------| | AC CHARACTERISTICS | Operating temperature -40°C ≤ Ta ≤ +85°C for Industrial | | | Operating voltage VDD range as described in Section 25.0 "Electrical | | | Characteristics". | ### FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS #### TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS | Param
No. | Symbol | Characteristic | Min | Тур | Max | Units | Conditions | |--------------|--------|-----------------------|-----|-----|-----|-------|--| | DO50 | Cosc2 | OSC2/SOSC2 pin | _ | _ | 15 | | In XT and HS modes when external clock is used to drive OSC1 | | DO56 | Сю | All I/O pins and OSC2 | _ | _ | 50 | pF | EC mode | | DO58 | Св | SCLx, SDAx | _ | _ | 400 | pF | In I ² C™ mode | ### **APPENDIX A: REVISION HISTORY** ### **Revision A (October 2006)** Initial release of this document. ### Revision B (March 2008) This revision includes minor typographical and formatting changes throughout the data sheet text. The major changes are referenced by their respective section in the following table. TABLE A-1: MAJOR SECTION UPDATES | Section Name | Update Description | |--|---| | Section 1.0 "Device Overview" | Added External Interrupt pin information (INT0 through INT4) to Table 1-1. | | Section 3.0 "Memory Organization" | Updated Change Notification Register Map table title to reflect application with dsPIC33FJXXXMCX10 devices (Table 3-2). | | | Added Change Notification Register Map tables (Table 3-3 and Table 3-4) for dsPIC33FJXXXMCX08 and dsPIC33FJXXXMCX06 devices, respectively. | | | Updated the bit range for AD1CON3 (ADCS<7:0>) in the ADC1 Register Map and added Note 1 (Table 3-15). | | | Updated the bit range for AD2CON3 (ADCS<7:0>) in the ADC2 Register Map (Table 3-16). | | | Updated the Reset value for C1FEN1 (FFFF) in the ECAN1 Register Map When C1CTRL1.WIN = 0 or 1 (Table 3-18) and updated the title to reflect applicable devices. | | | Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 0 to reflect applicable devices (Table 3-19). | | | Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 1 to reflect applicable devices (Table 3-20). | | | Updated the Reset value for C2FEN1 (FFFF) in the ECAN2 Register Map When C2CTRL1.WIN = 0 or 1 (Table 3-21) and updated the title to reflect applicable devices. | | | Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 0 to reflect applicable devices (Table 3-22). | | | Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 1 to reflect applicable devices (Table 3-23). | | | Updated Reset value for TRISA (C6FF) and changed the bit 12 and bit 13 values for ODCA to unimplemented in the PORTA Register Map (Table 3-25). | | | Changed the bit 10 and bit 9 values for PMD1 to unimplemented in the PMD Register Map (Table 3-34). | | Section 5.0 "Reset" | Added POR and BOR references in Reset Flag Bit Operation (Table 5-1). | | Section 7.0 "Direct Memory Access (DMA)" | Updated the table cross-reference in Note 2 in the DMAxREQ register (Register 7-2). |