

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp706t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJXXXGPX06/X08/X10 devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXGPX06/X08/X10 of devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES WITH 8 KBS RAM

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XBREV	0050	BREN			XB<14:0> xxxx						xxxx							
DISICNT	0052	_	_						Disable	e Interrupts	Counter R	egister						xxxx
BSRAM	0750	_	_	_	_	_	_	_	_	—	_	_	_	—	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	-	_	_	_	_	—		—	_	—	-	—	IW_SSR	IR_SSR	RL_SSR	0000
			_															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	7-6: IFS1: I	NTERRUPT	FLAG STAT	US REGISTE	R 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF		MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	U2TXIF: UAR	RT2 Transmitte	r Interrupt Flag	g Status bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt i	request has no	t occurred				
bit 14	U2RXIF: UAF	RT2 Receiver I	nterrupt Flag S	Status bit			
	1 = Interrupt i	request has oc request has no	currea t occurred				
bit 13	INT2IF: Exter	nal Interrupt 2	Flag Status bi	it			
	1 = Interrupt r	request has oc	curred	-			
	0 = Interrupt r	request has no	t occurred				
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
	1 = Interrupt r	request has oc request has no	curred				
bit 11	T4IF: Timer4	Interrupt Flag	Status bit				
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	nannel 4 Interr	upt Flag Status	bit		
	1 = Interrupt r	request has oc	curred				
hit 9		ut Compare Ch	nannel 3 Interr	unt Flag Status	bit		
bit 5	1 = Interrupt r	request has oc	curred	upt i lug olulus	bit		
	0 = Interrupt i	request has no	t occurred				
bit 8	DMA21IF: DM	MA Channel 2	Data Transfer	Complete Inter	rupt Flag Statu	us bit	
	1 = Interrupt r	request has oc	curred				
bit 7		Conturo Chonn		Eloa Status hit			
	1 = Interrupt r	request has on	curred	riag Status Dit			
	0 = Interrupt i	request has no	t occurred				
bit 6	IC7IF: Input C	Capture Chann	el 7 Interrupt l	Flag Status bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt i	request has no	t occurred				
bit 5	AD2IF: ADC2	2 Conversion C	Complete Inter	rupt Flag Status	s bit		
	$\perp = \text{interrupt }$	request has oc	t occurred				
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status bi	it			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

REGISTER 7-18:	IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3
----------------	--

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_	_	_	_		DMA1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		AD1IP<2:0>				U1TXIP<2:0>	
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as 'o)'				
bit 10-8	DMA1IP<2:0>	>: DMA Channe	el 1 Data Tra	nsfer Complete	Interrupt Price	prity bits	
	111 = Interrup	ot is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
	001 = Interrup 000 = Interrup	ot is priority 1 ot source is disa	abled				
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6-4	AD1IP<2:0>:	ADC1 Convers	sion Complet	e Interrupt Prior	rity bits		
	111 = Interrup	ot is priority 7 (ł	nighest priorit	ty interrupt)	•		
	•						
	•						
	001 = Interrur	ot is priority 1					
	000 = Interrup	ot source is disa	abled				
bit 3	Unimplemen	ted: Read as 'd)'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	mitter Interru	pt Priority bits			
	111 = Interrup	ot is priority 7 (ł	nighest priorit	ty interrupt)			
	•						
	•						
	• 001 = Interrur	ot is priority 1					
	000 = Interrup	ot source is disa	abled				
	1						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
CHEN	SIZE	DIR	HALF	NULLW	—	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
_	_	AMOD	E<1:0>	—	—	MODE	E<1:0>	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	CHEN: Chan	nel Enable bit						
	1 = Channel e	enabled						
bit 14	SIZE: Data Tr	ansfer Size hit						
bit 14	1 = Byte							
	0 = Word							
bit 13	DIR: Transfer	Direction bit (s	ource/destination	ation bus selec	t)			
	1 = Read from	n DMA RAM a	ddress, write	to peripheral ad	ddress			
	0 = Read from	n peripheral ad	dress, write t	o DMA RAM ad	ddress			
bit 12	HALF: Early I	Block Transfer	Complete Int	errupt Select bi	it			
	1 = Initiate blo 0 = Initiate blo	ock transfer col ock transfer col	mplete interru mplete interru	ipt when half of ipt when all of t	the data has be he data has bee	een moved en moved		
bit 11	NULLW: Null	Data Periphera	al Write Mode	e Select bit				
	1 = Null data	write to periphe	eral in additio	n to DMA RAM	write (DIR bit m	nust also be cle	ear)	
	0 = Normal or	peration						
bit 10-6	Unimplemen	ted: Read as '	0'					
bit 5-4	AMODE<1:0>	DMA Chann	el Operating	Mode Select bi	ts			
	11 = Reserve	d al Indirect Add	ressing mode	2				
	01 = Register Indirect without Post-Increment mode							
	00 = Register	Indirect with F	ost-Incremer	nt mode				
bit 3-2	Unimplemented: Read as '0'							
bit 1-0	MODE<1:0>:	DMA Channel	Operating M	ode Select bits				
11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)							l buffer)	
	10 = Continuo01 = One-Sho	ous, Ping-Pong ot, Ping-Pong r	nodes disable	ed				
	00 = Continue	ous, Ping-Pong	modes disal	bled				

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

15.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) in the "dsPIC33F Family Reference Manual",, which is available on the Microchip web site (www.microchip.com).

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-1: CiCTRL1: ECAN™ CONTROL REGISTER 1

11-0	11-0	R/W-0	R/W-0	r_0	R/M-1	R/W/-0	R/W-0		
						REOOP<2:0>	10000		
 bit 15		COIDE					hit 8		
bit 10							510		
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0		
(OPMODE<2:0>	•		CANCAP		_	WIN		
bit 7							bit 0		
<u></u>									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	r = Bit is Rese	rved		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13	CSIDL: Stop	in Idle Mode b	it						
	1 = Discontinu	ue module ope	ration when d	evice enters Id	lle mode				
	0 = Continue	module operat	ion in Idle mo	de					
bit 12	ABAT: Abort	All Pending Tra	ansmissions b	it					
	Signal all transmit buffers to abort transmission. Module will clear this bit when all transmissions are aborted								
bit 11	Reserved: Do	Reserved: Do not use							
bit 10-8	REQOP<2:0>	: Request On	eration Mode	bits					
	000 = Set No	rmal Operation	n mode	510					
	001 = Set Dis	able mode							
	010 = Set Loo	opback mode							
	011 = Set Lis	ten Only Mode	do						
	101 = Reserv	red - do not use	9						
	110 = Reserv	ed - do not use	9						
= =	111 = Set Lis	ten All Messag	es mode						
bit 7-5	OPMODE<2:	0>: Operation	Mode bits	1-					
	000 = Module	e is in Normai (è is in Disable r	peration mod	le					
	010 = Module	is in Loopbac	k mode						
	011 = Module	e is in Listen O	nly mode						
	100 = Module	e is in Configura	ation mode						
	110 = Reserv	red							
	111 = Module	e is in Listen Al	l Messages m	ode					
bit 4	Unimplemen	ted: Read as '	0'						
bit 3	CANCAP: C	AN Message R	eceive Timer	Capture Event	t Enable bit				
	1 = Enable in	put capture ba	sed on CAN n	nessage receiv	/e				
	0 = Disable C	AN capture							
DIT 2-1	Unimplemen	ted: Read as '	0'						
DIT U	WIN: SFR M	ap Window Se	lect bit						
	\perp = Use filter $=$ 0 = Use buffe	window r window							

REGISTER 19-8: CIEC: ECAN[™] TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			TERR	CNT<7:0>					
bit 15 bit 8									
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			RERR	CNT<7:0>					
bit 7							bit 0		
Legend:									
R = Readable b	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at PC	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unkno	own		

bit 15-8**TERRCNT<7:0>:** Transmit Error Count bitsbit 7-0**RERRCNT<7:0>:** Receive Error Count bits

REGISTER 19-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7		•	•		•	•	bit 0
Logond:		C = Clear only	v bit				

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0

RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/C-0 |
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-29: CiTRBnDLC: ECAN™ BUFFER n DATA LENGTH CONTRO	L (n = 0, 1,, 31)
--	-------------------

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0

bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR	1	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

REGISTER 19-30: CiTRBnDm: ECAN™ BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)⁽¹⁾

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRBnDm<7:0>: Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

NOTES:

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

TABLE 23-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD #lit10,Wn		Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD Wb,Ws,Wd		Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C.N.OV.Z
		ASR	Wb, Wns, Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N.Z
		ASR	Wb.#lit5.Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N.Z
5	BCLR	BCLR	f.#bit4	Bit Clear f	1	1	None
Ũ	Delik	BCLR	Ws #bit4	Bit Clear Ws	1	1	None
6	BDY	BRA	C Expr	Branch if Carry	1	1 (2)	None
Ŭ	DICA	BRA	CF Evor	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU Evor	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GEU, EXPI	Branch if greater than	1	1 (2)	None
		DDA		Branch if unsigned greater than	1	1 (2)	None
		DDA		Branch if less than or equal	1	1 (2)	None
		DDA		Branch if unsigned less than or equal	1	1 (2)	None
		DDA		Branch if less than	1	1 (2)	None
		DDA		Branch if unsigned less than	1	1 (2)	None
		DDA	N Emp	Branch if Negative	1	1 (2)	None
		DDA	NC Expr	Branch if Not Carry	1	1 (2)	None
		DRA	NC, EXPI	Branch if Not Nogetive	1	1 (2)	None
		DRA	NN, EXPL	Branch if Not Overflow	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Zero	1	1 (2)	None
		BRA	NZ, Expr	Branch if Accumulator A cuerflow	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator & overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Quarflow	1	1 (2)	None
		BRA	OV, Expr	Branch if A commulation A continents of	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	z,Expr		1	1 (2)	None
-		BRA	Wn		1	2	None
1	BSET	BSET	I,#bit4		1	1	None
	 	BSET	ws,#bit4		1	1	None
8	BSW	BSW.C	Ws,Wb	write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	vvrite ∠ bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4		1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A