

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

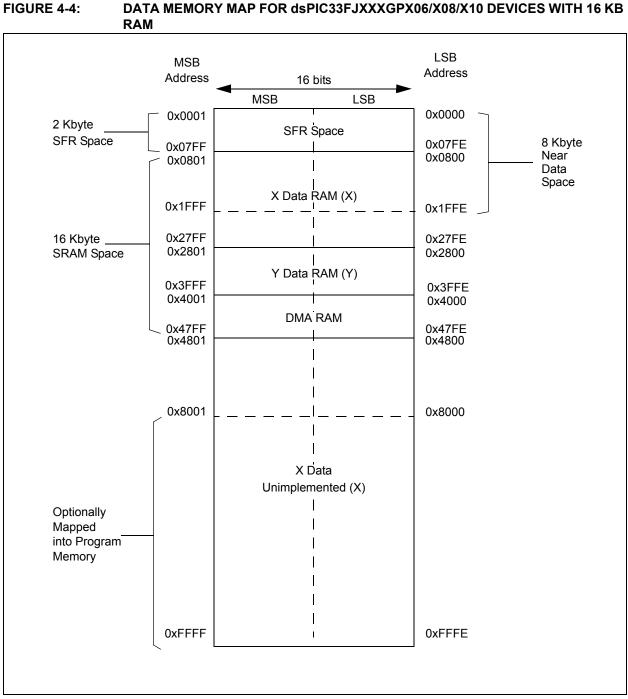
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp710-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0				
			US	EDT ⁽¹⁾		DL<2:0>					
bit 15							bit				
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0				
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF				
bit 7					•		bit				
Legend:		C = Clear on	y bit								
R = Readabl	le bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set					
0' = Bit is cle	eared	'x = Bit is unk	nown	U = Unimple	mented bit, rea	d as '0'					
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12	US: DSP Mul	tiply Unsigned	/Signed Contro	ol bit							
	Ų	ne multiplies a	Ų								
bit 11	-	ne multiplies a	-	.;+(1)							
	•			current loop it	eration						
	0 = No effect	0	•	·							
bit 10-8		Loop Nesting	Level Status b	its							
	<pre>111 = 7 DO loops active .</pre>										
	•										
	001 = 1 DO loop active										
L:1 7	000 = 0 DO IO	-	hl- h:4								
bit 7	SATA: AccA Saturation Enable bit 1 = Accumulator A saturation enabled										
		ator A saturatio									
bit 6	SATB: AccB Saturation Enable bit										
	1 = Accumulator B saturation enabled										
bit 5	0 = Accumulator B saturation disabled										
DIL D	SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation enabled										
	 a Data space write saturation disabled b = Data space write saturation disabled 										
bit 4	ACCSAT: Accumulator Saturation Mode Select bit										
	1 = 9.31 saturation (super saturation)										
1.11.0		ration (normal									
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾										
	 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less 										
bit 2		n Space Visibil									
		1 = Program space visible in data space									
		space not visib		ce							
bit 1		ng Mode Sele		1							
	,	onventional) ro (convergent)	U U								
bit 0		Fractional Mul	-								
		ode enabled fo									
	0 = Fractiona	l mode enable	d for DSP mul	tinly one							

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

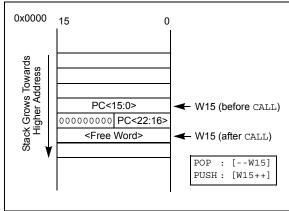
Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

DATA MEMORY MAP FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES WITH 16 KB

4.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJXXXGPX06/X08/X10 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing							
	concatenates the SRL register to the MSb							
	of the PC prior to the push.							

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-6: CALL STACK FRAME

4.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes in Table 4-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (i.e., the addressing mode can only be register direct) which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing).
- 2. The BREN bit is set in the XBREV register.
- 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed								
	Addressing should not be enabled								
	together. In the event that the user attempts								
	to do so, Bit-Reversed Addressing will								
	assume priority when active for the X								
	WAGU and X WAGU Modulo Addressing								
	will be disabled. However, Modulo								
	Addressing will continue to function in the X								
	RAGU.								

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

11.0										
U-0	R/W-0 R/W-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0		
 bit 15	DMA1IE AD1IE	U1TXIE	U1RXIE		SPI1IE		SPI1EIE	T3IE bit 8		
								DILC		
R/W-0	R/W-0 R/W-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0		
T2IE	- 1	DMA0IE	T1IE		OC1IE		IC1IE	INT0IE		
bit 7								bit (
Legend:										
R = Readable	e bit W = Writable bit		U = Unimple	emer	nted bit, rea	ad a	is '0'			
-n = Value at	POR '1' = Bit is set		'0' = Bit is c	leare	ed	>	<pre>c = Bit is unkn</pre>	own		
L:4 / F	Unimplemented: Deed op (o)									
bit 15	Unimplemented: Read as '0'	Transform			En abla bii					
bit 14	DMA1IE: DMA Channel 1 Data 1 = Interrupt request enabled	Transfer C	omplete inte	rrupt	Enable bit					
	0 = Interrupt request not enable	ed								
bit 13	AD1IE: ADC1 Conversion Com		upt Enable b	it						
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 12	U1TXIE: UART1 Transmitter In	terrupt Ena	ble bit							
	1 = Interrupt request enabled0 = Interrupt request not enable)d								
bit 11	U1RXIE: UART1 Receiver Inter	rupt Enable	e bit							
	 Interrupt request enabled Interrupt request not enabled 									
bit 10	SPI1IE: SPI1 Event Interrupt E									
	1 = Interrupt request enabled									
	0 = Interrupt request not enable	ed								
bit 9	SPI1EIE: SPI1 Error Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enable									
bit 8	T3IE: Timer3 Interrupt Enable bit									
	 I = Interrupt request enabled Interrupt request not enabled 									
bit 7	T2IE: Timer2 Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enable									
bit 6	OC2IE: Output Compare Channel 2 Interrupt Enable bit									
	1 = Interrupt request enabled									
bit 5	 o = Interrupt request not enabled IC2IE: Input Capture Channel 2 Interrupt Enable bit 									
	1 = Interrupt request enabled									
	0 = Interrupt request not enable	ed .								
bit 4	DMA0IE: DMA Channel 0 Data	Transfer C	omplete Inte	rrupt	Enable bit					
	 1 = Interrupt request enabled 0 = Interrupt request not enable 	ed								
bit 3	T1IE: Timer1 Interrupt Enable b									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T8IP<2:0>		_		MI2C2IP<2:0>					
bit 15	·			·			bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		SI2C2IP<2:0>				T7IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	Unimplem	ented: Read as 'o)'								
bit 14-12		: Timer8 Interrupt	5								
	111 = Inte	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•										
	•										
		001 = Interrupt is priority 1									
		rrupt source is disa									
bit 11	-	Unimplemented: Read as '0'									
bit 10-8	MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits										
	111 = Inte	rrupt is priority 7 (I	nighest priori	ity interrupt)							
	•										
	•										
		rrupt is priority 1									
		rrupt source is disa									
bit 7	-	ented: Read as 'o									
bit 6-4	SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) 										
	•										
	•										
		rrupt is priority 1									
L:1 0		rrupt source is disa									
bit 3	-	ented: Read as 'o									
bit 2-0		: Timer7 Interrupt		ity interrent)							
	⊥⊥⊥ = inte •	rrupt is priority 7 (ł	lignest prior	ity interrupt)							
	•										
	•										
		rrupt is priority 1	ablad								
	000 = Inte	rrupt source is disa	abled								

REGISTER 9-	-3: PLLF	BD: PLL FEE	DBACK DI	VISOR REGIS	TER			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	
	_	—	_	—	_	—	PLLDIV<8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLE)IV<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at P	alue at POR '1' = Bit is set '0' = Bit is cleared		x = Bit is unknown					

bit 15-9 Unimplemented: Read as '0'

bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

```
000000000 = 2

00000001 = 3

000000010 = 4

.

.

000110000 = 50 (default)

.

.

11111111 = 513
```

NOTES:

REGISTER 1	6-3: SPIxC	ON2: SPIx C	ONTROL R	EGISTER 2						
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
FRMEN	SPIFSD	FRMPOL	_	—	_	_	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—	—	—		—		FRMDLY				
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	wn			
bit 15	FRMEN: Framed SPIx Support bit									
	1 = Framed SPIx support enabled (\overline{SSx} pin used as frame sync pulse input/output)									
	0 = Framed S	SPIx support dis	sabled							
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Co	ntrol bit						
		nc pulse input (nc pulse output	· /							
bit 13	FRMPOL: Fra	ame Sync Puls	e Polarity bit							
	1 = Frame sync pulse is active-high									
	0 = Frame sync pulse is active-low									
bit 12-2	Unimplemen	ted: Read as '	0'							
bit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Selec	t bit						
	1 = Frame sy	nc pulse coinci	des with first	bit clock						
		nc pulse prece								
bit 0	Unimplemen	ted: This bit m	ust not be se	t to '1' by the u	ser application					

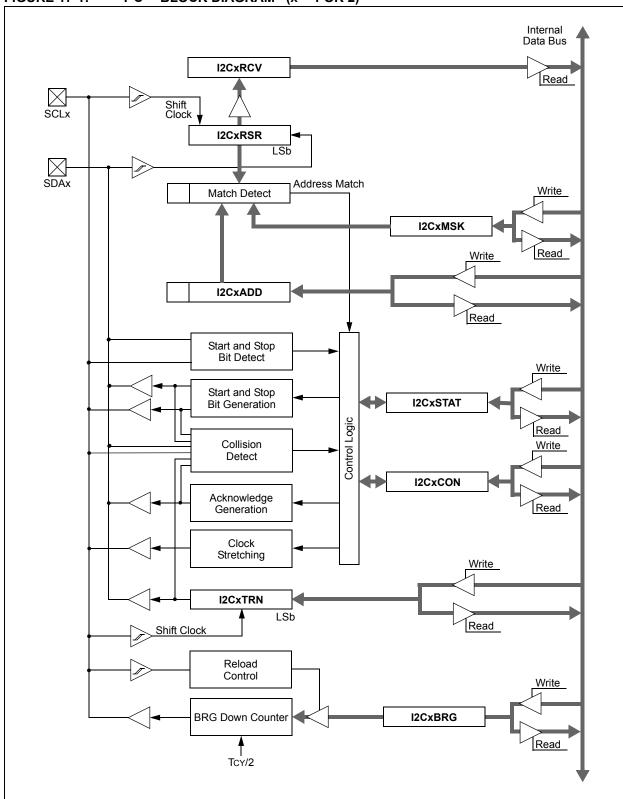


FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1 OR 2)

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

W = Writ '1' = Bit i TEN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read L: Stop in Idle Mo iscontinue module of intimue module of IrDA [®] Encoder and DA [®] encoder and DA [®] encoder and	HC R/W-0 JD URXINV ardware cleared table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enated d decoder enabled	'0' = Bit is cl are controlled b are controlled b device enters hode ble bit ⁽²⁾	y UARTx as defi y port latches; U	R/W-0 L<1:0> I as '0' x = Bit is unkr ned by UEN<1:	:0>				
HC = Ha W = Writ '1' = Bit i 'EN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read .: Stop in Idle Mo iscontinue modul continue module o IrDA [®] Encoder and DA [®] encoder and	JD URXINV ardware cleared table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat	BRGH U = Unimple '0' = Bit is cl are controlled b are controlled b device enters tode ble bit ⁽²⁾	PDSEI emented bit, reac eared y UARTx as defi y port latches; U	L<1:0> I as '0' x = Bit is unkr ned by UEN<1:	R/W-0 STSEL bit (
HC = Ha W = Writ '1' = Bit i 'EN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read .: Stop in Idle Mo iscontinue modul continue module o IrDA [®] Encoder and DA [®] encoder and	JD URXINV ardware cleared table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat	BRGH U = Unimple '0' = Bit is cl are controlled b are controlled b device enters tode ble bit ⁽²⁾	PDSEI emented bit, reac eared y UARTx as defi y port latches; U	L<1:0> I as '0' x = Bit is unkr ned by UEN<1:	STSEL bit (nown				
HC = Ha W = Writ '1' = Bit i 'EN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read .: Stop in Idle Mo iscontinue modul continue module o IrDA [®] Encoder and DA [®] encoder and	JD URXINV ardware cleared table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat	BRGH U = Unimple '0' = Bit is cl are controlled b are controlled b device enters tode ble bit ⁽²⁾	PDSEI emented bit, reac eared y UARTx as defi y port latches; U	L<1:0> I as '0' x = Bit is unkr ned by UEN<1:	STSEL bit (nown				
HC = Ha W = Writ '1' = Bit i 'EN: UARTx Enat ARTx is enabled; ARTx is disabled inimal plemented: Read L: Stop in Idle Mo iscontinue module o iscontinue module o IrDA [®] Encoder an DA [®] encoder and	ardware cleared table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat	U = Unimple '0' = Bit is cl are controlled b are controlled b device enters tode ble bit ⁽²⁾	emented bit, reac eared y UARTx as defi y port latches; U	l as '0' x = Bit is unkr ned by UEN<1:	bit (nown :0>				
W = Writ '1' = Bit i TEN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read L: Stop in Idle Mo iscontinue module of intimue module of IrDA [®] Encoder and DA [®] encoder and DA [®] encoder and	table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat	'0' = Bit is cl are controlled b are controlled b device enters hode ble bit ⁽²⁾	eared y UARTx as defi y port latches; U	x = Bit is unkr ned by UEN<1:	nown :0>				
W = Writ '1' = Bit i TEN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read L: Stop in Idle Mo iscontinue module of intimue module of IrDA [®] Encoder and DA [®] encoder and DA [®] encoder and	table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat	'0' = Bit is cl are controlled b are controlled b device enters hode ble bit ⁽²⁾	eared y UARTx as defi y port latches; U	x = Bit is unkr ned by UEN<1:	:0>				
W = Writ '1' = Bit i TEN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read L: Stop in Idle Mo iscontinue module of intimue module of IrDA [®] Encoder and DA [®] encoder and DA [®] encoder and	table bit is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat	'0' = Bit is cl are controlled b are controlled b device enters hode ble bit ⁽²⁾	eared y UARTx as defi y port latches; U	x = Bit is unkr ned by UEN<1:	:0>				
'1' = Bit i TEN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read .: Stop in Idle Mo iscontinue module of iscontinue module of IrDA [®] Encoder and DA [®] encoder and DA [®] encoder and	is set ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enate d decoder enabled	'0' = Bit is cl are controlled b are controlled b device enters hode ble bit ⁽²⁾	eared y UARTx as defi y port latches; U	x = Bit is unkr ned by UEN<1:	:0>				
EN: UARTx Enal ARTx is enabled; ARTx is disabled inimal plemented: Read .: Stop in Idle Mo iscontinue module o fontinue module o IrDA [®] Encoder and DA [®] encoder and	ble bit ⁽¹⁾ ; all UARTx pins a ; all UARTx pins a d as '0' de bit e operation when operation in Idle m and Decoder Enat	are controlled b are controlled b device enters lode ble bit ⁽²⁾	y UARTx as defi y port latches; U	ned by UEN<1:	:0>				
ARTx is enabled; ARTx is disabled inimal plemented: Read L: Stop in Idle Mo iscontinue module of ontinue module of IrDA [®] Encoder and DA [®] encoder and	; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat d decoder enabled	are controlled b device enters lode ole bit ⁽²⁾	y port latches; U						
ARTx is enabled; ARTx is disabled inimal plemented: Read L: Stop in Idle Mo iscontinue module of ontinue module of IrDA [®] Encoder and DA [®] encoder and	; all UARTx pins a ; all UARTx pins a d as '0' de bit le operation when operation in Idle m and Decoder Enat d decoder enabled	are controlled b device enters lode ole bit ⁽²⁾	y port latches; U						
ARTx is disabled ninimal plemented: Read .: Stop in Idle Mo iscontinue modul continue module o IrDA [®] Encoder and DA [®] encoder and	; all UARTx pins a d as '0' de bit e operation when operation in Idle m and Decoder Enat	are controlled b device enters lode ole bit ⁽²⁾	y port latches; U						
L: Stop in Idle Mo iscontinue modul continue module c IrDA [®] Encoder a DA [®] encoder and DA [®] encoder and	de bit le operation when operation in Idle m and Decoder Enat d decoder enabled	ode ble bit ⁽²⁾	Idle mode						
iscontinue modul continue module c IrDA [®] Encoder a DA [®] encoder and DA [®] encoder and	le operation when operation in Idle m and Decoder Enat d decoder enabled	ode ble bit ⁽²⁾	Idle mode						
ontinue module o IrDA [®] Encoder a DA [®] encoder and DA [®] encoder and	operation in Idle m and Decoder Enat	ode ble bit ⁽²⁾	Idle mode						
DA [®] encoder and DA [®] encoder and	d decoder enabled								
DA [®] encoder and		ł							
		1 = $IrDA^{(R)}$ encoder and decoder enabled 0 = $IrDA^{(R)}$ encoder and decoder disabled							
RTSMD: Mode Selection for UxRTS Pin bit									
xRTS pin in Simp xRTS pin in Flow									
plemented: Read	1 as '0'								
UEN<1:0>: UARTx Enable bits									
11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches									
10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches									
01 = UXTX, UXRX and UXRTS pins are enabled and used; UXCTS pin controlled by port latches 00 = UXTX and UXRX pins are enabled and used; UXCTS and UXRTS/BCLK pins controlled by									
ort latches					ionoù by				
E: Wake-up on Sta	art bit Detect Duri	ng Sleep Mode	e Enable bit						
1 = UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared									
in hardware on following rising edge									
0 = No wake-up enabled									
-									
•									
nable baud rate r	measurement on			eception of a Sy	ync field (55h				
			-						
	hardware on follo o wake-up enable CK: UARTx Loop nable Loopback r oopback mode is ID: Auto-Baud Er nable baud rate r efore other data;	hardware on following rising edge o wake-up enabled CK: UARTx Loopback Mode Select nable Loopback mode oopback mode is disabled ID: Auto-Baud Enable bit nable baud rate measurement on efore other data; cleared in hardwa	hardware on following rising edge o wake-up enabled CK: UARTx Loopback Mode Select bit nable Loopback mode oopback mode is disabled ID: Auto-Baud Enable bit nable baud rate measurement on the next chara	hardware on following rising edge o wake-up enabled CK: UARTx Loopback Mode Select bit nable Loopback mode oopback mode is disabled ID: Auto-Baud Enable bit nable baud rate measurement on the next character - requires re efore other data; cleared in hardware upon completion	hardware on following rising edge o wake-up enabled CK: UARTx Loopback Mode Select bit nable Loopback mode oopback mode is disabled ID: Auto-Baud Enable bit nable baud rate measurement on the next character - requires reception of a Stefore other data; cleared in hardware upon completion				

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

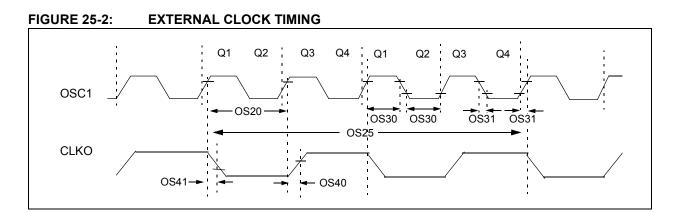
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 1	9-6: CiINTF	: ECAN™ IN	TERRUPT	FLAG REGIS	TER			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
—	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0	
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	
bit 7							bit 0	
Legend: C = Clear only bit			' bit					
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
bit 12	TXBP: Transmitter in Error State Bus Passive bit
bit 11	RXBP: Receiver in Error State Bus Passive bit
bit 10	TXWAR: Transmitter in Error State Warning bit
bit 9	RXWAR: Receiver in Error State Warning bit
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
bit 1	RBIF: RX Buffer Interrupt Flag bit
bit 0	TBIF: TX Buffer Interrupt Flag bit

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	
bit 7	•						bit 0	
Legend:								
R = Readable bit		W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

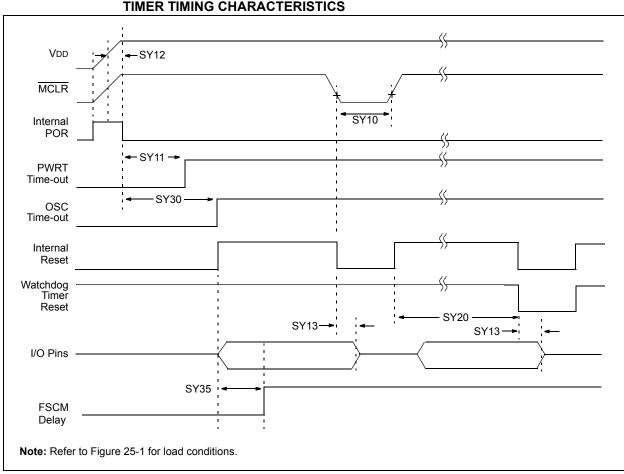

REGISTER 19-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER

bit 15-8	Unimplemented: Read as '0'
511 15-0	

- bit 7 IVRIE: Invalid Message Received Interrupt Enable bit
- bit 6 WAKIE: Bus Wake-up Activity Interrupt Flag bit
- bit 5 ERRIE: Error Interrupt Enable bit

bit 4 Unimplemented: Read as '0'

- bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit
- bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit
- bit 1 RBIE: RX Buffer Interrupt Enable bit
- bit 0 TBIE: TX Buffer Interrupt Enable bit



АС СНА	RACTE	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Sym bol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC			
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC			
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns	—			
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns	—			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	—	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns	—			
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2		ns	—			
OS42 GM External Oscillator Transconductance ⁽⁴⁾		14	16	18	mA/V	VDD = 3.3V TA = +25°C				

TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

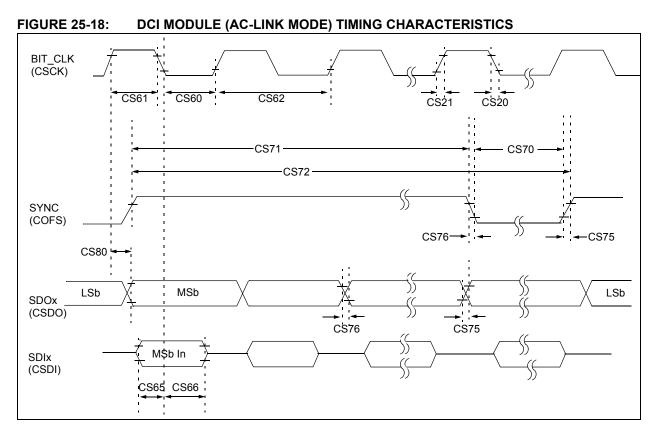


FIGURE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 25-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No. Symbol Chara		Charact	eristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	_	μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μs	—	
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	_	300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	_	
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100	—	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	—	μs	_	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	—	μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs	1	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	—	
		Setup Time	400 kHz mode	0.6	—	μs	1	
			1 MHz mode ⁽¹⁾	0.6	—	μs	1	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	—	
		Hold Time	400 kHz mode	600	—	ns	1	
			1 MHz mode ⁽¹⁾	250		ns	1	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—	
		From Clock	400 kHz mode	0	1000	ns	1	
			1 MHz mode ⁽¹⁾	0	350	ns	1	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3		μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	μs	can start	
IS50	Св	Bus Capacitive Lo	ading		400	pF		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 25-35: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

АС СНА	RACTERIS	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \end{array}$						
Param No.	Symbol	Characteristic ^(1,2)	Min	Тур ⁽³⁾	Max	Units	Conditions		
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	_		
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	—		
CS62	TBCLK	BIT_CLK Period		81.4		ns	Bit clock is input		
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	—	10	ns	_		
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	—	10	ns	_		
CS70	TSYNCLO	SYNC Data Output Low Time		19.5		μs	See Note 1		
CS71	TSYNCHI	SYNC Data Output High Time	—	1.3	_	μs	See Note 1		
CS72	TSYNC	SYNC Data Output Period	—	20.8	_	μs	See Note 1		
CS75	TRACL	Rise Time, SYNC, SDATA_OUT	—	10	25	ns	CLOAD = 50 pF, VDD = 5V		
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	—	10	25	ns	CLOAD = 50 pF, VDD = 5V		
CS77	TRACL	Rise Time, SYNC, SDATA_OUT	—	—	30	ns	CLOAD = 50 pF, VDD = 3V		
CS78	TFACL	Fall Time, SYNC, SDATA_OUT		—	30	ns	CLOAD = 50 pF, VDD = 3V		
CS80 TOVDACL Output Valid Delay from Rising Edge of BIT_CLK		—	—	15	ns	_			

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

APPENDIX A: REVISION HISTORY

Revision A (October 2006)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
Section 1.0 "Device Overview"	Added External Interrupt pin information (INT0 through INT4) to Table 1-1.
Section 3.0 "Memory Organization"	Updated Change Notification Register Map table title to reflect application with dsPIC33FJXXXMCX10 devices (Table 3-2).
	Added Change Notification Register Map tables (Table 3-3 and Table 3-4) for dsPIC33FJXXXMCX08 and dsPIC33FJXXXMCX06 devices, respectively.
	Updated the bit range for AD1CON3 (ADCS<7:0>) in the ADC1 Register Map and added Note 1 (Table 3-15).
	Updated the bit range for AD2CON3 (ADCS<7:0>) in the ADC2 Register Map (Table 3-16).
	Updated the Reset value for C1FEN1 (FFFF) in the ECAN1 Register Map When C1CTRL1.WIN = 0 or 1 (Table 3-18) and updated the title to reflect applicable devices.
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 0 to reflect applicable devices (Table 3-19).
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 1 to reflect applicable devices (Table 3-20).
	Updated the Reset value for C2FEN1 (FFFF) in the ECAN2 Register Map When C2CTRL1.WIN = 0 or 1 (Table 3-21) and updated the title to reflect applicable devices.
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 0 to reflect applicable devices (Table 3-22).
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 1 to reflect applicable devices (Table 3-23).
	Updated Reset value for TRISA (C6FF) and changed the bit 12 and bit 13 values for ODCA to unimplemented in the PORTA Register Map (Table 3-25).
	Changed the bit 10 and bit 9 values for PMD1 to unimplemented in the PMD Register Map (Table 3-34).
Section 5.0 "Reset"	Added POR and BOR references in Reset Flag Bit Operation (Table 5-1).
Section 7.0 "Direct Memory Access (DMA)"	Updated the table cross-reference in Note 2 in the DMAxREQ register (Register 7-2).

TABLE A-1: MAJOR SECTION UPDATES