

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

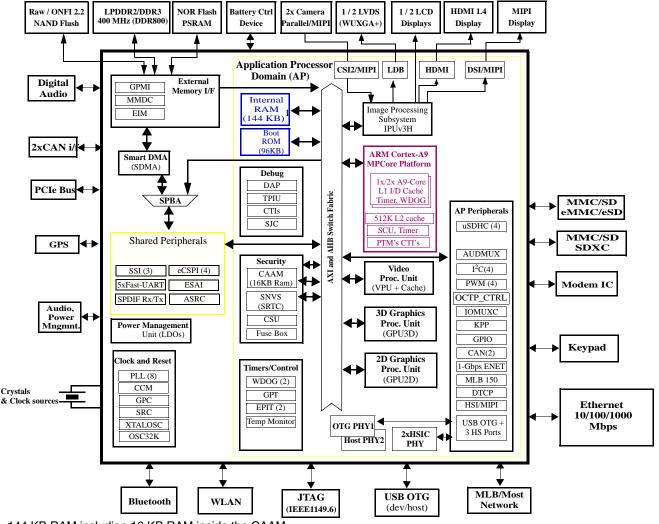
Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Betuns	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s4avm08adr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Architectural Overview

2 Architectural Overview

The following subsections provide an architectural overview of the i.MX 6Solo/6DualLite processor system.

2.1 Block Diagram

Figure 3 shows the functional modules in the i.MX 6Solo/6DualLite processor system.

¹ 144 KB RAM including 16 KB RAM inside the CAAM.

² For i.MX 6Solo, there is only one A9-core platform in the chip; for i.MX 6DualLite, there are two A9-core platforms.

Figure 3. i.MX 6Solo/6DualLite System Block Diagram

NOTE

The numbers in brackets indicate number of module instances. For example, PWM (4) indicates four separate PWM peripherals.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
CSU	Central Security Unit	Security	The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 6Solo/6DualLite platform.
CTI-0 CTI-1 CTI-2 CTI-3 CTI-4	Cross Trigger Interfaces	Debug / Trace	Cross Trigger Interfaces allows cross-triggering based on inputs from masters attached to CTIs. The CTI module is internal to the Cortex-A9 Core Platform.
СТМ	Cross Trigger Matrix	Debug / Trace	Cross Trigger Matrix IP is used to route triggering events between CTIs. The CTM module is internal to the Cortex-A9 Core Platform.
DAP	Debug Access Port	System Control Peripherals	 The DAP provides real-time access for the debugger without halting the core to: System memory and peripheral registers All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-A9 Core Platform.
DCIC-0 DCIC-1	Display Content Integrity Checker	Automotive IP	The DCIC provides integrity check on portion(s) of the display. Each i.MX 6Solo/6DualLite processor has two such modules.
DSI	MIPI DSI i/f	Multimedia Peripherals	The MIPI DSI IP provides DSI standard display port interface. The DSI interface support 80 Mbps to 1 Gbps speed per data lane.
DTCP	DTCP	Multimedia Peripherals	Provides encryption function according to Digital Transmission Content Protection standard for traffic over MLB150.
eCSPI1-4	Configurable SPI	Connectivity Peripherals	Full-duplex enhanced Synchronous Serial Interface. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals.
ENET	Ethernet Controller	Connectivity Peripherals	The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details.
			Note: The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Solo/6DualLite errata document (IMX6SDLCE).

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Block Mnemonic	Block Name	Subsystem	Brief Description
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.
FlexCAN-1 FlexCAN-2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.
512x8 Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6Solo/6DualLite processors consist of 512x8-bit fuse fox accessible through OCOTP_CTRL interface.
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
WDOG-1	Watch Dog	Timer Peripherals	The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
WDOG-2 (TZ)	Watch Dog (TrustZone)	Timer Peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW.
WEIM	NOR-Flash /PSRAM interface	Connectivity Peripherals	 The WEIM NOR-FLASH / PSRAM provides: Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency Multiple chip selects
XTALOSC	Crystal Oscillator I/F	Clocks, Resets, and Power Control	The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator to provide USB required frequency.

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Table 10. Maximum Supply Currents (continued)

Power Line	Conditions	Conditions Max Current				
NVCC_LVDS2P5 ⁶	_	 NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5. 				
MISC						
DDR_VREF		1	mA			

The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies).

- ² Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown in Table 10. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
- ³ This is the maximum current per active USB physical interface.
- ⁴ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios.
- ⁵ General equation for estimated, maximum power consumption of an IO power supply:
- $Imax = N \times C \times V \times (0.5 \times F)$

Where:

1

- N—Number of IO pins supplied by the power line
- C—Equivalent external capacitive load
- V—IO voltage
- (0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
- In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
- ⁶ NVCC_LVDS2P5 is supplied by VDD_HIGH_CAP (by external connection) so the maximum supply current is included in the current shown for VDD_HIGH_IN. The maximum supply current for NVCC_LVDS2P5 has not been characterized separately.

4.1.6 Low Power Mode Supply Currents

Table 11 shows the current core consumption (not including I/O) of i.MX 6Solo/6DualLite processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Units
WAIT	• ARM, SoC, and PU LDOs are set to 1.225	VDD_ARM_IN (1.4V)	4.5	
	 HIGH LDO set to 2.5 V Clocks are gated. 	VDD_SOC_IN (1.4V)	23	mA
	 DDR is in self refresh. PLLs are active in bypass (24MHz) 	VDD_HIGH_IN (3.0V)	13.5	
Supply Voltages remain ON	Total	79	mW	

Mode	Test Conditions	Supply	Max Current	Unit
Power Down	_	PCIE_VP (1.1 V)	1.3	mA
		PCIE_VPTX (1.1 V)	0.18	
		PCIE_VPH (2.5 V)	0.36	

Table 13. PCIe PHY Current Drain (continued)

4.1.9 HDMI Power Consumption

Table 14 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data and power-down modes.

Mode	Test Conditions	Supply	Max Current	Unit
Active	Bit rate 251.75 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.1	mA
	Bit rate 279.27 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.2	mA
	Bit rate 742.5 Mbps	HDMI_VPH	17	mA
		HDMI_VP	7.5	mA
	Bit rate 1.485 Gbps	HDMI_VPH	17	mA
		HDMI_VP	12	mA
	Bit rate 2.275 Gbps	HDMI_VPH	16	mA
		HDMI_VP	17	mA
	Bit rate 2.97 Gbps	HDMI_VPH	19	mA
		HDMI_VP	22	mA
Power-down	—	HDMI_VPH	49	μA
		HDMI_VP	1100	μA

Table 14. HDMI PHY Current Drain

4.2 **Power Supplies Requirements and Restrictions**

The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations:

- Excessive current during power-up phase
- Prevention of the device from booting
- Irreversible damage to the processor (worst-case scenario)

4.3.2.2 LDO_2P5

The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 8 for minimum and maximum input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the USB Phy, LVDS Phy, HDMI Phy, MIPI Phy, E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately $40 \,\Omega$

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Solo/6DualLite reference manual.

4.3.2.3 LDO_USB

The LDO_USB module implements a programmable linear-regulator function from the USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either USB_VBUS supply, when both are present. If only one of the USB_VBUS voltages is present, then, the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Solo/6DualLite reference manual.

Parameters	Symbol	Test Conditions	Min	Мах	Unit
Input Reference Voltage	Vref	_	$0.49 \times \text{OVDD}$	$0.51 \times \text{OVDD}$	V
DC High-Level input voltage	Vih_DC	_	Vref+0.13	OVDD	V
DC Low-Level input voltage	Vil_DC	_	OVSS	Vref-0.13	V
Differential Input Logic High	Vih_diff	—	0.26	Note ²	
Differential Input Logic Low	Vil_diff	—	Note ³	-0.26	
Pull-up/Pull-down Impedance Mismatch	Mmpupd	—	-15	15	%
240 Ω unit calibration resolution	Rres	—	_	10	Ω
Keeper Circuit Resistance	Rkeep	—	110	175	kΩ
Input current (no pull-up/down)	lin	VI = 0, VI = OVDD	-2.5	2.5	μA

Table 24. LPDDR2 I/O DC Electrical Parameters¹ (continued)

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

³ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

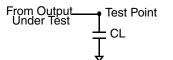
4.6.3.2 DDR3/DDR3L Mode I/O DC Parameters

The parameters in Table 25 are guaranteed per the operating ranges in Table 8, unless otherwise noted. For details on supported DDR memory configurations, see Section 4.9.4, "Multi-Mode DDR Controller (MMDC).

Parameters	Symbol	Test Conditions	Min	Мах	Unit
High-level output voltage	VOH	loh= -0.1mA Voh (for DSE=001)	$0.8 \times \text{OVDD}^2$	—	V
Low-level output voltage	VOL	lol= 0.1mA Vol (for DSE=001)	_	$0.2 \times \text{OVDD}$	V
High-level output voltage	VOH	loh= -1mA Voh (for all except DSE=001)	$0.8 \times \text{OVDD}$	—	V
Low-level output voltage	VOL	Iol= 1mA Vol (for all except DSE=001)	_	$0.2 \times \text{OVDD}$	V
Input Reference Voltage	Vref	_	$0.49 \times \text{OVDD}$	$0.51 \times \text{OVDD}$	V
DC High-Level input voltage	Vih_DC	_	Vref ³ +0.1	OVDD	V
DC Low-Level input voltage	Vil_DC	_	OVSS	Vref-0.1	V
Differential Input Logic High	Vih_diff	_	0.2	See Note ⁴	V
Differential Input Logic Low	Vil_diff	_	See Note ³	-0.2	V
Termination Voltage	Vtt	Vtt tracking OVDD/2	$0.49 \times \text{OVDD}$	$0.51 \times \text{OVDD}$	V
Pull-up/Pull-down Impedance Mismatch	Mmpupd		-10	10	%

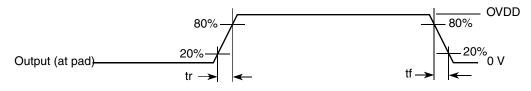
Table 25. DDR3/DDR3L I/O DC Electrical Characteristics¹

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Output Differential Voltage	VOD	Rload-50Ω Diff	300	500	mV
Output High Voltage	VOH	Rload-50Ω Diff	1.25	1.75	V
Output Low Voltage	VOL	Rload-50 Ω Diff	0.75	1.25	V
Common-mode output voltage ((Vpadp*+Vpadn*)/2)	Vocm	Rload-50 Ω Diff	1	1.5	V
Differential output impedance	Zo	_	1.6	—	kΩ


Table 28. MLB I/O DC Characteristics

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:


- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 5 and Figure 6.

CL includes package, probe and fixture capacitance

Figure 5. Load Circuit for Output

4.7.1 General Purpose I/O AC Parameters

The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers.

4.10.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)

NF19 NF18 NAND_CE_B ┥╺┝ NF23 NAND_CLE ┥┥┝┥ NF25 NF26 NF24 NAND_ALE NF25 NF26 NAND_WE/RE_B NF22 NAND_CLK NAND_DQS NAND_DQS Output enable NF20 NF20 NF21 NF21 **.** CMD ADD NAND_DATA[7:0] NAND_DATA[7:0] Output enable

Figure 30 to Figure 32 show the write and read timing of Source Synchronous Mode.

Figure 30. Source Synchronous Mode Command and Address Timing Diagram

ID	Parameter	Parameter Symbol		Cycle	Unit
			Min	Мах	
NF28	Data write setup	tDS ⁶	0.25 × tCK - 0.32	—	ns
NF29	Data write hold	tDH ⁶	0.25 × tCK - 0.79	—	ns
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ ⁷	—	3.18	
NF31	NAND_DQS/NAND_DQ read hold skew	tQHS ⁷	—	3.27	

Table 48. Samsung Toggle Mode Timing Parameters¹ (continued)

¹ The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

⁴ CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level.

⁵ PRE_DELAY+1) \geq (AS+DS).

⁶ Shown in Figure 34, Samsung Toggle Mode Data Write Timing diagram.

⁷ Shown in Figure 33, NAND_DQS/NAND_DQ Read Valid Window.

For DDR Toggle mode, Figure 33 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11 External Peripheral Interface Parameters

The following subsections provide information on external peripheral interfaces.

4.11.1 AUDMUX Timing Parameters

The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document.

4.11.2 ECSPI Timing Parameters

This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes.

Characteristics ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low ⁵			_	22.0 12.0	x ck i ck	ns
ESAI_TX_CLK rising edge to ESAI_TX_FS out (wI) high	_	_	_	19.0 9.0	x ck i ck	ns
ESAI_TX_CLK rising edge to ESAI_TX_FS out (wI) low		_	_	20.0 10.0	x ck i ck	ns
ESAI_TX_CLK rising edge to data out enable from high impedance		_	_	22.0 17.0	x ck i ck	ns
ESAI_TX_CLK rising edge to data out valid			_	18.0 13.0	x ck i ck	ns
ESAI_TX_CLK rising edge to data out high impedance ⁶⁷			_	21.0 16.0	x ck i ck	ns
ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge ⁵		_	2.0 18.0		x ck i ck	ns
ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK falling edge		_	2.0 18.0		x ck i ck	ns
ESAI_TX_FS input hold time after ESAI_TX_CLK falling edge		_	4.0 5.0		x ck i ck	ns
ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle	—	2 x T _C	15		—	ns
ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK output		_	—	18.0	—	ns
ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK output		_	—	18.0	_	ns
	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low ⁵ ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low ESAI_TX_CLK rising edge to data out enable from high impedance ESAI_TX_CLK rising edge to data out valid ESAI_TX_CLK rising edge to data out high impedance ⁶⁷ ESAI_TX_CLK rising edge to data out high impedance ⁶⁷ ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge ⁵ ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK falling edge ESAI_TX_FS input hold time after ESAI_TX_CLK falling edge ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle ESAI_TX_FF input rising edge to ESAI_TX_CLK output	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low ⁵ — ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high — ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low — ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low — ESAI_TX_CLK rising edge to data out enable from high — impedance — ESAI_TX_CLK rising edge to data out valid — ESAI_TX_CLK rising edge to data out valid — ESAI_TX_CLK rising edge to data out high impedance ⁶⁷ — ESAI_TX_FS input (bl, wr) setup time before — ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge — ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK falling edge — ESAI_TX_FS input hold time after ESAI_TX_CLK falling — edge — — ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle — ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK — ESAI_RX_HF_CLK input rising edge to ESAI_TX_CLK —	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5——ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high——ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low——ESAI_TX_CLK rising edge to data out enable from high——ESAI_TX_CLK rising edge to data out valid——ESAI_TX_CLK rising edge to data out valid——ESAI_TX_CLK rising edge to data out high impedanceESAI_TX_CLK rising edge to data out high impedanceESAI_TX_CLK rising edge to data out high impedanceESAI_TX_CLK falling edge5ESAI_TX_FS input (bl, wr) setup time beforeESAI_TX_FS input (wl) setup time before ESAI_TX_CLKESAI_TX_FS input hold time after ESAI_TX_CLK fallingESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycleESAI_TX_HF_CLK input rising edge to ESAI_TX_CLKESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5———ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high———ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low———ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low———ESAI_TX_CLK rising edge to data out enable from high———impedance————ESAI_TX_CLK rising edge to data out valid———ESAI_TX_CLK rising edge to data out valid———ESAI_TX_CLK rising edge to data out high impedance67——ESAI_TX_CLK rising edge to data out high impedance67——ESAI_TX_CLK rising edge to data out high impedance67——ESAI_TX_FS input (bl, wr) setup time before——2.0ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK——2.0falling edge[SAI_TX_FS input hold time after ESAI_TX_CLK falling——4.0edge[SAI_TX_HF_CLK/ESAI_TX_HF_CLK clock cycle—2.2 x T_C15ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle—2.2 x T_C15ESAI_RX_HF_CLK input rising edge to ESAI_TX_CLK————etaal_TX_HF_CLK input rising edge to ESAI_RX_CLK————	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5 — — — — — 22.0 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high — — — — 19.0 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high — — — — 9.0 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low — — — — 20.0 ESAI_TX_CLK rising edge to data out enable from high impedance — — — 22.0 Impedance — — — — 22.0 ESAI_TX_CLK rising edge to data out valid — — — 17.0 ESAI_TX_CLK rising edge to data out valid — — — 18.0 — — — — 18.0 — ESAI_TX_CLK rising edge to data out high impedance ⁶⁷ — — 21.0 16.0 ESAI_TX_CLK falling edge ⁵ — — — 18.0 — ESAI_TX_CLK falling edge ⁵ — — 18.0 — ESAI_TX	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5 — — — — — — 22.0 X ck ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high — — — — — 19.0 X ck ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high — — — — 19.0 X ck ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) how — — — — 20.0 X ck ESAI_TX_CLK rising edge to data out enable from high impedance — — — — 20.0 X ck ESAI_TX_CLK rising edge to data out valid — — — — 21.0 X ck ESAI_TX_CLK rising edge to data out valid — — — 18.0 X ck ESAI_TX_CLK rising edge to data out high impedance ⁶⁷ — — — 18.0 X ck ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge5 — — 20.0 — X ck ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK — — — <

Table 51. Enhanced Serial Audio Interface (ESAI) Timing Parameters (continued)

¹ i ck = internal clock

x ck = external clock

i ck a = internal clock, asynchronous mode

(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)

i ck s = internal clock, synchronous mode

(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)

² bl = bit length

- wl = word length
- wr = word length relative
- ³ ESAI_TX_CLK(SCKT pin) = transmit clock
- ESAI_RX_CLK(SCKR pin) = receive clock
- ESAI_TX_FS(FST pin) = transmit frame sync
- ESAI_RX_FS(FSR pin) = receive frame sync
- ESAI_TX_HF_CLK(HCKT pin) = transmit high frequency clock
- ESAI_RX_HF_CLK(HCKR pin) = receive high frequency clock
- ⁴ For the internal clock, the external clock cycle is defined by lcyc and the ESAI control register.
- ⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame.
- ⁶ Periodically sampled and not 100% tested.

4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling

Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 23, "GPIO DC Parameters," on page 41.

4.11.5 Ethernet Controller (ENET) AC Electrical Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

4.11.5.1 ENET MII Mode Timing

This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK)

The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

Figure 43 shows MII receive signal timings. Table 55 describes the timing parameters (M1–M4) shown in the figure.

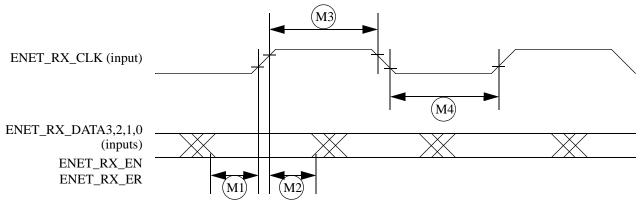


Figure 43. MII Receive Signal Timing Diagram

Table 55. MII Receive Signal Timing

ID	Characteristic ¹	Min	Max	Unit
M1	ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup	5	—	ns
M2	ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold	5		ns
M3	ENET_RX_CLK pulse width high	35%	65%	ENET_RX_CLK period
M4	ENET_RX_CLK pulse width low	35%	65%	ENET_RX_CLK period

¹ ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

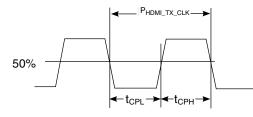


Figure 54. TMDS Clock Signal Definitions

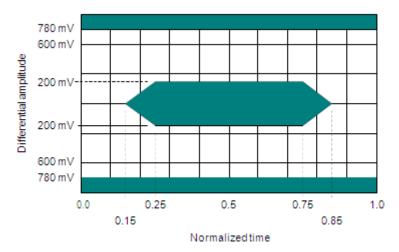
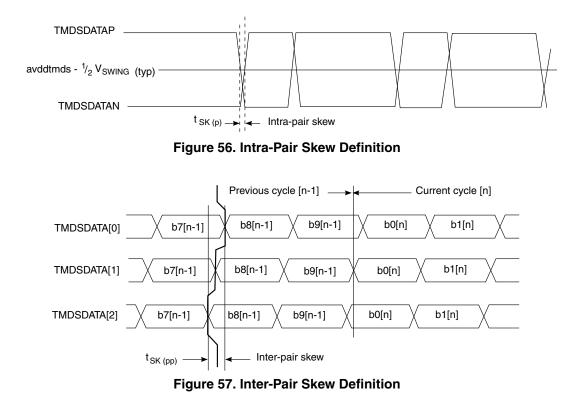



Figure 55. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1

i.MX 6Solo/6DualLite Automotive and Infotainment Applications Processors, Rev. 8, 09/2017

4.11.9 I²C Module Timing Parameters

This section describes the timing parameters of the I^2C module. Figure 59 depicts the timing of I^2C module, and Table 63 lists the I^2C module timing characteristics.

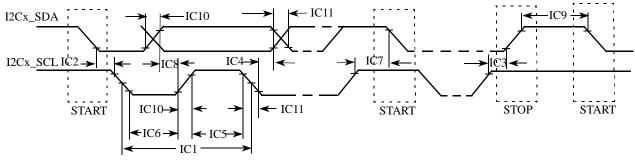


Figure 59. I²C Bus Timing

Table 63. I ² C Module	Timing Parameters
-----------------------------------	-------------------

ID	Parameter	Standa	ard Mode	Fast Mo	de	Unit
	Farameter	Min	Мах	Min	Max	Unit
IC1	I2Cx_SCL cycle time	10		2.5	—	μs
IC2	Hold time (repeated) START condition	4.0	_	0.6	—	μs
IC3	Set-up time for STOP condition	4.0	_	0.6	—	μs
IC4	Data hold time	01	3.45 ²	0 ¹	0.9 ²	μs
IC5	HIGH Period of I2Cx_SCL Clock	4.0	_	0.6	—	μs
IC6	LOW Period of the I2Cx_SCL Clock	4.7	_	1.3	—	μs
IC7	Set-up time for a repeated START condition	4.7	_	0.6		μs
IC8	Data set-up time	250	_	100 ³		ns
IC9	Bus free time between a STOP and START condition	4.7	_	1.3		μs
IC10	Rise time of both I2Cx_SDA and I2Cx_SCL signals	—	1000	$20 + 0.1 C_b^{4}$	300	ns
IC11	Fall time of both I2Cx_SDA and I2Cx_SCL signals	—	300	$20 + 0.1 C_b^{4}$	300	ns
IC12	Capacitive load for each bus line (C _b)	—	400	—	400	pF

¹ A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL.

² The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.

³ A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the I2Cx_SCL line is released.

⁴ $C_b = total capacitance of one bus line in pF.$

ID	Parameter	Min	Мах	Unit	
	Synchronous External Clock Opera	tion			
SS44	AUDx_RXD setup before AUDx_TXC falling 10.0 —				
SS45	S45 AUDx_RXD hold after AUDx_TXC falling		_	ns	
SS46	AUDx_RXD rise/fall time - 6.0 ns				

Table 84. SSI Transmitter Timing with External Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

4.11.19.4 SSI Receiver Timing with External Clock

Figure 94 depicts the SSI receiver external clock timing and Table 85 lists the timing parameters for the receiver timing with the external clock.

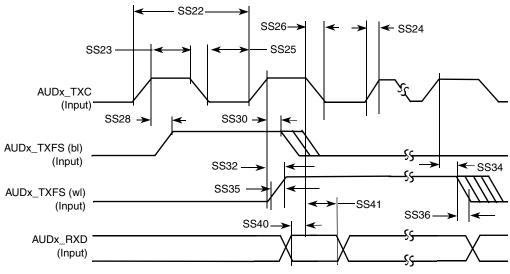


Figure 94. SSI Receiver External Clock Timing Diagram

Package Information and Contact Assignments

				Out of Reset Condition ¹			
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Output	Value ²
DRAM_D52	AB22	NVCC_DRAM	DDR	ALT0	DRAM_DATA52	Input	100 k Ω pull-up
DRAM_D53	AC23	NVCC_DRAM	DDR	ALT0	DRAM_DATA53	Input	100 k Ω pull-up
DRAM_D54	AD25	NVCC_DRAM	DDR	ALT0	DRAM_DATA54	Input	100 k Ω pull-up
DRAM_D55	AC25	NVCC_DRAM	DDR	ALT0	DRAM_DATA55	Input	100 k Ω pull-up
DRAM_D56	AB25	NVCC_DRAM	DDR	ALT0	DRAM_DATA56	Input	100 k Ω pull-up
DRAM_D57	AA21	NVCC_DRAM	DDR	ALT0	DRAM_DATA57	Input	100 k Ω pull-up
DRAM_D58	Y25	NVCC_DRAM	DDR	ALT0	DRAM_DATA58	Input	100 k Ω pull-up
DRAM_D59	Y22	NVCC_DRAM	DDR	ALT0	DRAM_DATA59	Input	100 k Ω pull-up
DRAM_D60	AB23	NVCC_DRAM	DDR	ALT0	DRAM_DATA60	Input	100 k Ω pull-up
DRAM_D61	AA23	NVCC_DRAM	DDR	ALT0	DRAM_DATA61	Input	100 k Ω pull-up
DRAM_D62	Y23	NVCC_DRAM	DDR	ALT0	DRAM_DATA62	Input	100 k Ω pull-up
DRAM_D63	W25	NVCC_DRAM	DDR	ALT0	DRAM_DATA63	Input	100 kΩ pull-up
DRAM_D4	AC1	NVCC_DRAM	DDR	ALT0	DRAM_DATA04	Input	100 kΩ pull-up
DRAM_D5	AD1	NVCC_DRAM	DDR	ALT0	DRAM_DATA05	Input	100 k Ω pull-up
DRAM_D6	AB4	NVCC_DRAM	DDR	ALT0	DRAM_DATA06	Input	100 k Ω pull-up
DRAM_D7	AE4	NVCC_DRAM	DDR	ALT0	DRAM_DATA07	Input	100 kΩ pull-up
DRAM_D8	AD5	NVCC_DRAM	DDR	ALT0	DRAM_DATA08	Input	100 k Ω pull-up
DRAM_D9	AE5	NVCC_DRAM	DDR	ALT0	DRAM_DATA09	Input	100 k Ω pull-up
DRAM_DQM0	AC3	NVCC_DRAM	DDR	ALT0	DRAM_DQM0	Output	Low
DRAM_DQM1	AC6	NVCC_DRAM	DDR	ALT0	DRAM_DQM1	Output	Low
DRAM_DQM2	AB8	NVCC_DRAM	DDR	ALT0	DRAM_DQM2	Output	Low
DRAM_DQM3	AE10	NVCC_DRAM	DDR	ALT0	DRAM_DQM3	Output	Low
DRAM_DQM4	AB18	NVCC_DRAM	DDR	ALT0	DRAM_DQM4	Output	Low
DRAM_DQM5	AC20	NVCC_DRAM	DDR	ALT0	DRAM_DQM5	Output	Low
DRAM_DQM6	AD24	NVCC_DRAM	DDR	ALT0	DRAM_DQM6	Output	Low
DRAM_DQM7	Y21	NVCC_DRAM	DDR	ALT0	DRAM_DQM7	Output	Low
DRAM_RAS	AB15	NVCC_DRAM	DDR	ALT0	DRAM_RAS	Output	Low
DRAM_RESET	Y6	NVCC_DRAM	DDR	ALT0	DRAM_RESET	Output	Low
DRAM_SDBA0	AC15	NVCC_DRAM	DDR	ALT0	DRAM_SDBA0	Output	Low
DRAM_SDBA1	Y15	NVCC_DRAM	DDR	ALT0	DRAM_SDBA1	Output	Low
DRAM_SDBA2	AB12	NVCC_DRAM	DDR	ALT0	DRAM_SDBA2	Output	Low
DRAM_SDCKE0	Y11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE0	Output	Low
DRAM_SDCKE1	AA11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE1	Output	Low
DRAM_SDCLK_0	AD15	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK0_P	Output	Low
DRAM_SDCLK_0_B	AE15	NVCC_DRAM		_	DRAM_SDCLK0_N	—	
DRAM_SDCLK_1	AD14	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK1_P	Output	Low

Table 97. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

				Out of Reset Condition ¹			
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Output	Value ²
EIM_EB1	K23	NVCC_EIM	GPIO	ALT0	EIM_EB1	Output	High
EIM_EB2	E22	NVCC_EIM	GPIO	ALT5	GPIO2_IO30	Input	100 kΩ pull-up
EIM_EB3	F23	NVCC_EIM	GPIO	ALT5	GPIO2_IO31	Input	100 kΩ pull-up
EIM_LBA	K22	NVCC_EIM	GPIO	ALT0	EIM_LBA	Output	High
EIM_OE	J24	NVCC_EIM	GPIO	ALT0	EIM_OE	Output	High
EIM_RW	K20	NVCC_EIM	GPIO	ALT0	EIM_RW	Output	High
EIM_WAIT	M25	NVCC_EIM	GPIO	ALT0	EIM_WAIT	Input	100 kΩ pull-up
ENET_CRS_DV	U21	NVCC_ENET	GPIO	ALT5	GPIO1_IO25	Input	100 kΩ pull-up
ENET_MDC	V20	NVCC_ENET	GPIO	ALT5	GPIO1_IO31	Input	100 kΩ pull-up
ENET_MDIO	V23	NVCC_ENET	GPIO	ALT5	GPIO1_IO22	Input	100 kΩ pull-up
ENET_REF_CLK ³	V22	NVCC_ENET	GPIO	ALT5	GPIO1_IO23	Input	100 kΩ pull-up
ENET_RX_ER	W23	NVCC_ENET	GPIO	ALT5	GPIO1_IO24	Input	100 kΩ pull-up
ENET_RXD0	W21	NVCC_ENET	GPIO	ALT5	GPIO1_IO27	Input	100 kΩ pull-up
ENET_RXD1	W22	NVCC_ENET	GPIO	ALT5	GPIO1_IO26	Input	100 kΩ pull-up
ENET_TX_EN	V21	NVCC_ENET	GPIO	ALT5	GPIO1_IO28	Input	100 kΩ pull-up
ENET_TXD0	U20	NVCC_ENET	GPIO	ALT5	GPIO1_IO30	Input	100 kΩ pull-up
ENET_TXD1	W20	NVCC_ENET	GPIO	ALT5	GPIO1_IO29	Input	100 kΩ pull-up
GPIO_0	T5	NVCC_GPIO	GPIO	ALT5	GPIO1_IO00	Input	100 k Ω pull-down
GPIO_1	T4	NVCC_GPIO	GPIO	ALT5	GPIO1_IO01	Input	100 kΩ pull-up
GPIO_16	R2	NVCC_GPIO	GPIO	ALT5	GPIO7_IO11	Input	100 kΩ pull-up
GPIO_17	R1	NVCC_GPIO	GPIO	ALT5	GPIO7_IO12	Input	100 kΩ pull-up
GPIO_18	P6	NVCC_GPIO	GPIO	ALT5	GPIO7_IO13	Input	100 kΩ pull-up
GPIO_19	P5	NVCC_GPIO	GPIO	ALT5	GPIO4_IO05	Input	100 kΩ pull-up
GPIO_2	T1	NVCC_GPIO	GPIO	ALT5	GPIO1_IO02	Input	100 kΩ pull-up
GPIO_3	R7	NVCC_GPIO	GPIO	ALT5	GPIO1_IO03	Input	100 k Ω pull-up
GPIO_4	R6	NVCC_GPIO	GPIO	ALT5	GPIO1_IO04	Input	100 k Ω pull-up
GPIO_5	R4	NVCC_GPIO	GPIO	ALT5	GPIO1_IO05	Input	100 k Ω pull-up
GPIO_6	Т3	NVCC_GPIO	GPIO	ALT5	GPIO1_IO06	Input	100 k Ω pull-up
GPIO_7	R3	NVCC_GPIO	GPIO	ALT5	GPIO1_IO07	Input	100 k Ω pull-up
GPIO_8	R5	NVCC_GPIO	GPIO	ALT5	GPIO1_IO08	Input	100 k Ω pull-up
GPIO_9	T2	NVCC_GPIO	GPIO	ALT5	GPIO1_IO09	Input	100 k Ω pull-up
HDMI_CLKM	J5	HDMI	—	—	HDMI_TX_CLK_N	—	—
HDMI_CLKP	J6	HDMI	—	_	HDMI_TX_CLK_P	—	—
HDMI_D0M	K5	HDMI	—	_	HDMI_TX_DATA0_N	—	—
HDMI_D0P	K6	HDMI	—	_	HDMI_TX_DATA0_P	—	—
HDMI_D1M	J3	HDMI	—	_	HDMI_TX_DATA1_N	—	—

Table 97. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

GND DRAM_D1 DRAM_SDQS0 DRAM_D7 DRAM_D9 DRAM_D9 DRAM_SDQS1_B DRAM_D11 DRAM_D11 DRAM_D24 DRAM_D24 DRAM_D24 DRAM_D24 DRAM_D26 DRAM_D26 DRAM_A5 DRAM_A5 DRAM_A5 DRAM_A5 DRAM_A5 DRAM_SDCLK_1_B DRAM_SDCLK_1_B DRAM_SDCLK_0_B DRAM_SDCLK_0_B DRAM_SDCLK_0_B DRAM_SDCLK_0_B	D L_D1 SDQS0 L_D7 L_D9 DQS1_B DQM3 DQM3 L_A9	DRAM_D5 DRAM_D0 DRAM_SDQS0_B GND DRAM_D8 DRAM_D8 DRAM_SDQS1 GND CRN DRAM_D29 GND DRAM_D29 GND DRAM_D20 DRAM_D30	DRAM_D4 DRAM_VREF DRAM_DQM0	LVDS1_TX2_N LVDS1_TX2_P	LVDS1_TX1_P	-
	L_D1 D1 D24 D28 D28 D28 L_A9 L_A9	DRAM_D0 DRAM_SDQS0_B GND DRAM_D8 DRAM_SDQS1 GND CRAM_SDQS2 CRN CRN CRN DRAM_D29 GND DRAM_D30 DRAM_D30	DRAM_VREF DRAM_DQM0	LVDS1 TX2 P	IVDC1 TY1 N	
	SDQS0 D7 D7 D9 D0S1_B D11 D11 D28 D0M3 D0M3	DRAM_SDQS0_B GND DRAM_D8 DRAM_SDQS1 GND GND DRAM_SDQS2 GND GND DRAM_D29 GND DRAM_D30	DRAM_DQM0			2
	L_D7 D0S1_B D0S2_B D24 D24 D26 L_A9	GND DRAM_D8 DRAM_SDQS1 GND DRAM_SDQS2 DRAM_D29 GND GND DRAM_D30 DRAM_D30		GND	LVDS1_TX3_N	3
	L_D9 DQS1_B DQS2_B DQM3 DQM3	DRAM_D8 DRAM_SDQS1 GND GND DRAM_SDQS2 DRAM_D29 GND GND DRAM_D30 DRAM_A12	DRAM_D2	DRAM_D6	LVDS1_TX3_P	4
	DQS1_B _D11 _D24 _D24 _D26 _D26	DRAM_SDQS1 GND DRAM_SDQS2 DRAM_D29 GND DRAM_D30 DRAM_D30	DRAM_D13	DRAM_D12	DRAM_D3	5
	D11 DQS2_B D24 D26 D26	GND DRAM_SDQS2 DRAM_D29 GND DRAM_D30 DRAM_D30	DRAM_DQM1	DRAM_D14	DRAM_D10	9
	DQS2_B D24 D26 D26	DRAM_SDQS2 DRAM_D29 GND DRAM_D30 DRAM_A12 DRAM_A12	DRAM_D15	DRAM_D16	GND	7
	_D24 DQM3 _D26	DRAM_D29 GND DRAM_D30 DRAM_A12	DRAM_D22	DRAM_DQM2	DRAM_D17	8
	DQM3 	GND DRAM_D30 DRAM_A12	DRAM_D28	DRAM_D18	DRAM_D23	6
	_D26 _A9	DRAM_D30 DRAM_A12	DRAM_SDQS3	DRAM_SDQS3_B	GND	10
	L_A9	DRAM_A12	DRAM_D31	DRAM_D27	DRAM_SDCKE1	11
			DRAM_A11	DRAM_SDBA2	DRAM_A14	12
14 DRAM_SD 15 DRAM_SD 16 DRAM_ 17 ZQP	L_A5	GND	DRAM_A6	DRAM_A8	GND	13
	CLK_1_B	DRAM_SDCLK_1	DRAM_A0	DRAM_A1	DRAM_A2	14
	CLK_0_B	DRAM_SDCLK_0	DRAM_SDBA0	DRAM_RAS	DRAM_A10	15
	CAS	GND	DRAM_SDODT0	DRAM_SDWE	GND	16
	AD	DRAM_CS1	DRAM_A13	DRAM_SDODT1	DRAM_D32	17
18 DRAM_SDQS4_B	DQS4_B	DRAM_SDQS4	DRAM_D34	DRAM_DQM4	DRAM_D33	18
19 DRAM_D35	_D35	GND	DRAM_D39	DRAM_D38	GND	19
20 DRAM_SDQS5_B	DQS5_B	DRAM_SDQS5	DRAM_DQM5	DRAM_D41	DRAM_D45	20
21 DRAM_D46	_D46	DRAM_D43	DRAM_D47	DRAM_D42	DRAM_D57	21
22 DRAM_D49	_D49	GND	DRAM_D48	DRAM_D52	GND	22
23 DRAM_SDQS6_B	DQS6_B	DRAM_SDQS6	DRAM_D53	DRAM_D60	DRAM_D61	23
24 DRAM_D50	_D50	DRAM_DQM6	DRAM_D51	GND	DRAM_SDQS7_B	24
25 GND	Δ	DRAM_D54	DRAM_D55	DRAM_D56	DRAM_SDQS7	25
AE		AD	AC	AB	AA	

Table 100. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite (continued)

7 Revision History

Table 101 provides the current revision history for this data sheet. Table 102 provides a revision history for previous revisions.

Rev. Number	Date	Substantive Changes
8	09/2017	 Replaced ipp_dse with DSE throughout. Section 1, "Introduction: Replaced text "low voltage DDR3" with "DDR3L" in the features list of i.MX 6Solo/6DualLite applications processors. Table 1, "Example Orderable Part Numbers," on page 3: Added orderable part numbers. Figure 1: Updated to include Rev 1.4 in Silicon Revision section. Section 2.1, "Block Diagram: Updated WEIM with EIM in the block diagram. Table 2, "i.MX 6Solo/6DualLite Modules List," on page 11: Rearranged alphabetically. Table 6, "Absolute Maximum Ratings," on page 24: Removed VDD_HIGH_IN supply voltage (LDO bypass) parameter. Max. value of VDD_HIGH_CAP supply output voltage corrected to 2.85V. Table 22: Updated test condition of "XTALI input leakage current at startup" parameter; replaced 32KHz RTC with 24MHz.
		 Added Section 4.6.4, "RGMII I/O 2.5V I/O DC Electrical Parameters. Section 4.8.2, "DDR I/O Output Buffer Impedance: Modified introductory text. Corrected Figure 22, "Asynchronous A/D Muxed Write Access," on page 60. Table 53, "eMMC4.4/4.41 Interface Timing Specification," on page 80: Added the following footnote to Card Input Clock section: 1 Clock duty cycle will be in the range of 47% to 53%. Min. value of uSDHC Input Setup Time reduced to 1.7ns.

Table 101. i.MX 6Solo/6DualLite Data Sheet Document Rev. 8 History