

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1GHz
Co-Processors/DSP	Multimedia; NEON [™] SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s4avm10ad

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Subsystem	Brief Description
SDMA	Smart Direct Memory Access	System Control Peripherals	 The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: Powered by a 16-bit Instruction-Set micro-RISC engine Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels 48 events with total flexibility to trigger any combination of channels Memory accesses including linear, FIFO, and 2D addressing Shared peripherals between ARM and SDMA Very fast Context-Switching with 2-level priority based preemptive multi-tasking DMA units with auto-flush and prefetch capability Flexible address management for DMA transfers (increment, decrement, and no address) DMA ports can handle unit-directional and bi-directional flows (copy mode) Up to 8-word buffer for configurable burst transfers Support of byte-swapping and CRC calculations Library of Scripts and API is available
SJC	System JTAG Controller	System Control Peripherals	The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6Solo/6DualLite processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6Solo/6DualLite SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.
SNVS	Secure Non-Volatile Storage	Security	Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.
SPDIF	Sony Philips Digital Interconnect Format	Multimedia Peripherals	A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality.

Table 2. i.MX 6Solo/6DualLite Modules List (co	continued)
--	------------

Modules List

Signal Name	Remarks
DRAM_VREF	When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 k Ω 0.5% resistor to GND and a 1 k Ω 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 μ F capacitor.
	To reduce supply current, a pair of 1.5 k Ω 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when four DDR3 ICs plus the i.MX 6Solo/6DualLite are drawing current on the resistor divider.
	It is recommended to use regulated power supply for "big" memory configurations (more that eight devices).
ZQPAD	DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND.
NVCC_LVDS_2P5	The DDR pre-drivers share the NVCC_LVDS_2P5 ball with the LVDS interface. This ball can be shorted to VDD_HIGH_CAP on the circuit board.
VDD_FA FA_ANA	These signals are reserved for NXP manufacturing use only. User must tie both connections to GND.
GPANAIO	Analog output for NXP use only. This output must remain unconnected.
JTAG_nnnn	The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up.
	JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and must be avoided.
	JTAG_MOD is referenced as SJC_MOD in the i.MX 6Solo/6DualLite reference manual. Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k Ω) is allowed. JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain.
NC	These signals are No Connect (NC) and must remain unconnected by the user.
SRC_POR_B	This cold reset negative logic input resets all modules and logic in the IC.
ONOFF	In normal mode may be connected to ON/OFF button (De-bouncing provided at this input). Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes "forced" OFF.
TEST_MODE	TEST_MODE is for NXP factory use. This signal is internally connected to an on-chip pull-down device. This signal must either be tied to Vss or remain unconnected.
PCIE_REXT	The impedance calibration process requires connection of reference resistor 200 Ω 1% precision resistor on PCIE_REXT pad to ground.
CSI_REXT	MIPI CSI PHY reference resistor. Use 6.04 K Ω 1% resistor connected between this pad and GND
DSI_REXT	MIPI DSI PHY reference resistor. Use 6.04 K Ω 1% resistor connected between this pad and GND

4.1.3 **Operating Ranges**

Table 8 provides the operating ranges of the i.MX 6Solo/6DualLite processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the *i.MX* 6Solo/6DualLite Reference Manual (IMX6SDLRM).

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment ²
Run mode: LDO enabled	VDD_ARM_IN	1.4 ³	—	1.5	V	LDO Output Set Point (VDD_ARM_CAP) = 1.275 V minimum for operation up to 996MHz.
		1.275 ³	—	1.5	V	LDO Output Set Point (VDD_ARM_CAP) = 1.150 V minimum for operation up to 792MHz.
		1.25 ³	_	1.5	V	LDO Output Set Point (VDD_ARM_CAP) = 1.125 V minimum for operation up to 396MHz.
	VDD_SOC_IN	1.275 ^{3,4}		1.5	V	ARM \leq 792 MHz, VPU \leq 328 MHz: VDD_SOC and VDD_PU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) = 1.225 V ⁵ maximum and 1.15 V minimum.
		1.275 ^{3,}		1.5	V	ARM \leq 996 MHz, VPU \leq 328 MHz: VDD_SOC and VDD_PU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) = 1.225 V ⁵ maximum and 1.175 V minimum.
Run mode:	VDD_ARM_IN	1.150	-	1.3	V	LDO bypassed for operation up to 792 MHz
LDO bypassed ^o		1.125		1.3	V	LDO bypassed for operation up to 396 MHz
	VDD_SOC_IN	1.150 ⁷	—	1.21 ⁵	V	LDO bypassed for operation VPU \leq 328 MHz
Standby/DSM mode	VDD_ARM_IN	0.9	—	1.3	V	Refer to Table 11, "Stop Mode Current and Power Consumption," on page 30.
	VDD_SOC_IN	0.9	—	1.225 ⁵	V	_
VDD_HIGH internal regulator	VDD_HIGH_IN	2.8	—	3.3	V	Must match the range of voltages that the rechargeable backup battery supports.
Backup battery supply range	VDD_SNVS_IN ⁸	2.9	—	3.3	V	Should be supplied from the same supply as VDD_HIGH_IN if the system does not require keeping real time and other data on OFF state.
USB supply	USB_OTG_VBUS	4.4		5.25	V	_
voltages	USB_H1_VBUS	4.4		5.25	V	_
DDR I/O	NVCC_DRAM	1.14	1.2	1.3	V	LPDDR2
supply voltage		1.425	1.5	1.575	V	DDR3
		1.283	1.35	1.45	V	DDR3L
Supply for RGMII I/O power group ⁹	NVCC_RGMII	1.15		2.625	V	1.15 V–1.30 V in HSIC 1.2 V mode 1.43 V–1.58 V in RGMII 1.5 V mode 1.70 V–1.90 V in RGMII 1.8 V mode 2.25 V–2.625 V in RGMII 2.5 V mode

Table 8. Operating Ranges

4.4 PLL's Electrical Characteristics

4.4.1 Audio/Video PLL's Electrical Parameters

Table 15. Audio/Video PLL's Electrical Parameters

Parameter	Value
Clock output range	650 MHz ~1.3 GHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

4.4.2 528 MHz PLL

Table 16. 528 MHz PLL's Electrical Parameters

Parameter	Value
Clock output range	528 MHz PLL output
Reference clock	24 MHz
Lock time	<11250 reference cycles

4.4.3 Ethernet PLL

Table 17. Ethernet PLL's Electrical Parameters

Parameter	Value
Clock output range	500 MHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

4.4.4 480 MHz PLL

Table 18. 480 MHz PLL's Electrical Parameters

Parameter	Value
Clock output range	480 MHz PLL output
Reference clock	24 MHz
Lock time	<383 reference cycles

CAUTION

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. NXP strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The OSC32k runs from VDD_SNVS_CAP supply, which comes from VDD_HIGH_IN/VDD_SNVS_IN.

Table 21.	OSC32K	Main	Characteristics

Characteristic	Min	Тур	Max	Comments
Fosc	—	32.768 KHz	—	This frequency is nominal and determined mainly by the crystal selected. 32.0 K will work as well.
Current consumption	_	4 μΑ	_	The 4 μ A is the consumption of the oscillator alone (OSC32k). Total supply consumption will depend on what the digital portion of the RTC consumes. The ring oscillator consumes 1 μ A when ring oscillator is inactive, 20 μ A when the ring oscillator is running. Another 1.5 μ A is drawn from vdd_rtc in the power_detect block. So, the total current is 6.5 μ A on vdd_rtc when the ring oscillator is not running.
Bias resistor	_	14 MΩ	_	This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.
				Crystal Properties
Cload		10 pF		Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.
ESR	—	50 kΩ	100 kΩ	Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.

4.6 I/O DC Parameters

This section includes the DC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes
- LVDS I/O
- MLB I/O

NOTE

The term 'OVDD' in this section refers to the associated supply rail of an input or output.

Table 25. DDR3/DDR3L I/O DC Electrical Characteristics ¹	(continued)
---	-------------

Parameters	Symbol	Test Conditions	Min	Мах	Unit
240 Ω unit calibration resolution	Rres	—	—	10	Ω
Keeper Circuit Resistance	Rkeep	—	105	165	kΩ
Input current (no pull-up/down)	lin	VI = 0, VI = OVDD	-2.9	2.9	μA

¹ Note that the JEDEC DDR3 specification (JESD79_3D) supersedes any specification in this document.

² OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)

³ Vref – DDR3/DDR3L external reference voltage.

⁴ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

4.6.4 RGMII I/O 2.5V I/O DC Electrical Parameters

The RGMII interface complies with the RGMII standard version 1.3. The parameters in Table 26 are guaranteed per the operating ranges in Table 8, unless otherwise noted.

Parameters	Symbol	Test Conditions	Min	Мах	Unit
High-level Output Voltage ¹	V _{OH}	loh= -0.1mA (DSE=001,010) loh= -1mA (DSE=011,100,101,110,111)	OVDD-0.15	—	V
Low-level Output Voltage ¹	V _{OL}	lol= 0.1mA (DSE=001,010) lol= 1mA (DSE=011,100,101,110,111)	_	0.15	V
Input Reference Voltage	V _{ref}	_	$0.49 \times \text{OVDD}$	$0.51 \times \text{OVDD}$	V
High-Level Input Voltage ^{2 3}	V _{IH}	_	$0.7 \times \text{OVDD}$	OVDD	V
Low-Level Input Voltage ^{2 3}	V _{IL}	_	0	$0.3 \times \text{OVDD}$	V
Input Hysteresis (OVDD=1.8V)	V _{HYS_HighVDD}	OVDD=1.8V	250	_	mV
Input Hysteresis (OVDD=2.5V)	$V_{HYS_HighVDD}$	OVDD=2.5V	250	—	mV
Schmitt Trigger VT+ ^{3 4}	V _{TH} ⁺	_	$0.5 \times \text{OVDD}$	_	mV
Schmitt Trigger VT- ^{3 4}	V _{TH} ⁻	_	—	$0.5 \times \text{OVDD}$	mV
Pull-up Resistor (22 kΩ PU)	R _{PU_22K}	Vin=0V	—	212	μA
Pull-up Resistor (22 kΩ PU)	R _{PU_22K}	Vin=OVDD		1	μA
Pull-up Resistor (47 kΩ PU)	R _{PU_47K}	Vin=0V	—	100	μA
Pull-up Resistor (47 kΩ PU)	R _{PU_47K}	Vin=OVDD	—	1	μA
Pull-up Resistor (100 k Ω PU)	R _{PU_100K}	Vin=0V	—	48	μA
Pull-up Resistor (100 k Ω PU)	R _{PU_100K}	Vin=OVDD		1	μA
Pull-down Resistor (100 kΩ PD)	R _{PD_100K}	Vin=OVDD	_	48	μA

Table 26. RGMII I/O 1.8V and 2.5V mode DC Electrical Characteristics¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output Pad Transition Times, rise/fall (Max Drive, DSE=111)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	2.72/2.79 1.51/1.54	
Output Pad Transition Times, rise/fall (High Drive, DSE=101)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	3.20/3.36 1.96/2.07	ns
Output Pad Transition Times, rise/fall (Medium Drive, DSE=100)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	3.64/3.88 2.27/2.53	115
Output Pad Transition Times, rise/fall (Low Drive. DSE=011)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	4.32/4.50 3.16/3.17	
Input Transition Times ¹	trm	_			25	ns

Table 29. General Purpose I/O AC Parameters 1.8 V Mode

¹ Hysteresis mode is recommended for inputs with transition times greater than 25 ns.

Table 30. General Purpose I/O AC Parameters 3.3 V Mode

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output Pad Transition Times, rise/fall (Max Drive, DSE=101)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	1.70/1.79 1.06/1.15	
Output Pad Transition Times, rise/fall (High Drive, DSE=011)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	2.35/2.43 1.74/1.77	ne
Output Pad Transition Times, rise/fall (Medium Drive, DSE=010)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	3.13/3.29 2.46/2.60	113
Output Pad Transition Times, rise/fall (Low Drive. DSE=001)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate			5.14/5.57 4.77/5.15	
Input Transition Times ¹	trm	_	—		25	ns

¹ Hysteresis mode is recommended for inputs with transition times greater than 25 ns.

4.7.2 DDR I/O AC Parameters

Table 31 shows the AC parameters for DDR I/O operating in LPDDR2 mode. For details on supported DDR memory configurations, see Section 4.9.4, "Multi-Mode DDR Controller (MMDC).

Table 31. DDR I/O LPDDR2 Mode AC Parameters¹

Parameter	Symbol	Test Condition	Min	Мах	Unit
AC input logic high	Vih(ac)	_	Vref + 0.22	OVDD	V
AC input logic low	Vil(ac)	—	0	Vref - 0.22	V
AC differential input high voltage ²	Vidh(ac)	—	0.44	—	V
AC differential input low voltage	Vidl(ac)	—	_	0.44	V
Input AC differential cross point voltage ³	Vix(ac)	Relative to Vref	-0.12	0.12	V
Over/undershoot peak	Vpeak	—	_	0.35	V

Parameter	Symbol	Test Condition	Min	Мах	Unit
Over/undershoot area (above OVDD or below OVSS)	Varea	400 MHz	_	0.3	V-ns
Single output slew rate, measured between	tsr	50 Ω to Vref. 5 pF load. Drive impedance = 40 Ω ± 30%	1.5	3.5	V/nc
Vol(ac) and Voh(ac)		50 Ω to Vref. 5pF load.Drive impedance = 60 $\Omega \pm$ 30%	1	2.5	v/115
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 400 MHz	_	0.1	ns

Table 31. DDR I/O LPDDR2 Mode AC Parameters¹ (continued)

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) - Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.

Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters								
Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit		
AC input logic high	Vih(ac)	—	Vref + 0.175	—	OVDD	V		
AC input logic low	Vil(ac)	—	0	—	Vref - 0.175	V		
AC differential input voltage ²	Vid(ac)	—	0.35	—	_	V		
Input AC differential cross point voltage ^{3, 4}	Vix(ac)	Relative to Vref	Vref - 0.15	—	Vref + 0.15	V		
Over/undershoot peak	Vpeak	—	_	—	0.4	V		
Over/undershoot area (above OVDD or below OVSS)	Varea	400 MHz	—	—	0.5	V-ns		
Single output slew rate, measured between Vol(ac) and Voh(ac)	tsr	Driver impedance = 34 Ω	2.5	—	5	V/ns		
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 400 MHz	_	_	0.1	ns		

Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters¹

¹ Note that the JEDEC JESD79_3C specification supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) - Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

⁴ Extended range for Vix is only allowed for the clock and when the single-ended clock input signals CK and CK# are:
 • monotonic with a single-ended swing VSEL/VSEH of at least VDD/2 ±250 mV, and

• the differential slew rate of CK - CK# is larger than 3 V/ns

Parameter	LPDDR2 (Dual channel)	LPDDR2 (Single channel)	DDR3	DDR3L
Clock frequency	400 MHz	400 MHz	400 MHz	400 MHz
Bus width	32-bit per channel	16/32-bit	16/32/64-bit	16/32/64-bit
Channel	Dual	Single	Single	Single
Chip selects	2 per channel	2	2	2

 Table 45. i.MX 6DualLite Supported DDR3/DDR3L/LPDDR2 Configurations

4.10 General-Purpose Media Interface (GPMI) Timing

The i.MX 6Solo/6DualLite GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select.

It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing mode separately described in the following subsections.

4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 25 through Figure 28 depicts the relative timing between GPMI signals at the module level for different operations under asynchronous mode. Table 46 describes the timing parameters (NF1–NF17) that are shown in the figures.

Figure 25. Command Latch Cycle Timing Diagram

Table 57. MII Asynchronous Inp	outs Signal Timing
--------------------------------	--------------------

ID	Characteristic	Min	Max	Unit
M9 ¹	ENET_CRS to ENET_COL minimum pulse width	1.5		ENET_TX_CLK period

¹ ENET_COL has the same timing in 10-Mbit 7-wire interface mode.

4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

Figure 46 shows MII asynchronous input timings. Table 58 describes the timing parameters (M10–M15) shown in the figure.

Figure 46. MII Serial Management Channel Timing Diagram

Table 58. MII Serial M	Management	Channel	Timing
------------------------	------------	---------	--------

ID	Characteristic	Min	Max	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay)	0	_	ns
M11	ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay)	—	5	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	18	—	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	—	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

i.MX 6Solo/6DualLite										
	RGB,	R	GB/TV	Comment ^{1,2}						
Port Name (x=0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ³	16-bit YCrCb	20-bit YCrCb			
DIx_PIN4			•				•	Additional frame/row synchronous		
DIx_PIN5								signals with programmable timing		
DIx_PIN6										
DIx_PIN7										
DIx_PIN8										
DIx_D0_CS								—		
DIx_D1_CS								Alternate mode of PWM output for contrast or brightness control		
DIx_PIN11								_		
DIx_PIN12				_				_		
DIx_PIN13				_				Register select signal		
DIx_PIN14								Optional RS2		
DIx_PIN15			[DRDY/D	V			Data validation/blank, data enable		
DIx_PIN16								Additional data synchronous		
DIx_PIN17				Q				signals with programmable features/timing		

Table 66. Video Signal Cross-Reference (continued)

¹ Signal mapping (both data and control/synchronization) is flexible. The table provides examples.

² Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows:

A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap.
The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit.

³ This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported.

NOTE

Table 66 provides information for both the DISP0 and DISP1 ports. However, DISP1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all the above configurations. See the IOMUXC chapter of the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)*.

4.11.10.5 IPU Display Interface Timing

The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls accordantly.

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit								
Z _{ID}	Differential input impedance	_	80	_	125	Ω								
LP Line Receiver DC Specifications														
V _{IL}	Input low voltage	_	_	—	550	mV								
V _{IH}	Input high voltage	—	920	—	_	mV								
V _{HYST}	Input hysteresis	—	—	_	mV									
	Contentio	n Line Receiver DC Specific	cations											
V _{ILF}	Input low fault threshold	_	200	—	450	mV								

Table 70. Electrical and Timing Information (continued)

4.11.12.2 MIPI D-PHY Signaling Levels

The signal levels are different for differential HS mode and single-ended LP mode. Figure 67 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.

Figure 67. D-PHY Signaling Levels

4.11.12.8 Reverse High-Speed Data Transmission Timing

4.11.12.9 Low-Power Receiver Timing

Figure 73. Input Glitch Rejection of Low-Power Receivers

4.11.13 HSI Host Controller Timing Parameters

This section describes the timing parameters of the HSI Host Controller which are compliant with High-speed Synchronous Serial Interface (HSI) Physical Layer specification version1.01.

4.11.13.1 Synchronous Data Flow

Figure 74. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)

Figure 87. Test Access Port Timing Diagram

Figure 88. JTAG_TRST_B Timing Diagram

	Devementer 1/2	All Freq	Linit	
		Min	Мах	Unit
SJ0	JTAG_TCK frequency of operation 1/(3•T _{DC}) ¹	0.001	22	MHz
SJ1	JTAG_TCK cycle time in crystal mode	45	_	ns
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	_	ns
SJ3	JTAG_TCK rise and fall times	_	3	ns
SJ4	Boundary scan input data set-up time	5	_	ns
SJ5	Boundary scan input data hold time	24	_	ns
SJ6	JTAG_TCK low to output data valid	—	40	ns
SJ7	JTAG_TCK low to output high impedance	—	40	ns
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	—	ns
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	—	ns
SJ10	JTAG_TCK low to JTAG_TDO data valid	—	44	ns
SJ11	JTAG_TCK low to JTAG_TDO high impedance	—	44	ns
SJ12	JTAG_TRST_B assert time	100	_	ns
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	—	ns

Table 79. JTAG Timing

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.11.18 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 80 and Figure 89 and Figure 90 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

4.11.19.2 SSI Receiver Timing with Internal Clock

Figure 92 depicts the SSI receiver internal clock timing and Table 83 lists the timing parameters for the receiver timing with the internal clock.

Figure 92. SSI Receiver Internal Clock Timing Diagram

Table 83. SSI Receiver	[·] Timing with	Internal Clock
------------------------	--------------------------	----------------

ID	Parameter	Min	Мах	Unit
	Internal Clock Operation			
SS1	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns
SS2	AUDx_TXC/AUDx_RXC clock high period	36.0	_	ns
SS3	AUDx_TXC/AUDx_RXC clock rise time	—	6.0	ns
SS4	AUDx_TXC/AUDx_RXC clock low period	36.0	_	ns
SS5	AUDx_TXC/AUDx_RXC clock fall time	—	6.0	ns
SS7	AUDx_RXC high to AUDx_TXFS (bl) high	—	15.0	ns
SS9	AUDx_RXC high to AUDx_TXFS (bl) low	—	15.0	ns
SS11	AUDx_RXC high to AUDx_TXFS (wI) high	—	15.0	ns
SS13	AUDx_RXC high to AUDx_TXFS (wI) low	—	15.0	ns
SS20	AUDx_RXD setup time before AUDx_RXC low	10.0	_	ns
SS21	AUDx_RXD hold time after AUDx_RXC low	0.0	_	ns

6.2.2 21 x 21 mm Supplies Contact Assignments and Functional Contact Assignments

Table 96 shows supplies contact assignments for the 21 x 21 mm package.

Table 96.	21	x 21	mm	Supplies	Contact	Assignments
-----------	----	------	----	----------	---------	-------------

Supply Rail Name	Ball(s) Position(s)	Remark
CSI_REXT	D4	—
DRAM_VREF	AC2	—
DSI_REXT	G4	—
GND	A4, A8, A13, A25, B4, C1, C4, C6, C10, D3, D6, D8, E5, E6, E7, F5, F6, F7, F8, G3, G10, G19, H8, H12, H15, H18, J2, J8, J12, J15, J18, K8, K10, K12, K15, K18, L2, L5, L8, L10, L12, L15, L18, M8, M10, M12, M15, M18, N8, N10, N15, N18, P8, P10, P12, P15, P18, R8, R12, R15, R17, T8, T11, T12, T15, T17, T19, U8, U11, U12, U15, U17, U19, V8, V19, W3, W7, W8, W9, W10, W11, W12, W13, W15, W16, W17, W18, W19, Y5, Y24, AA7, AA10, AA13, AA16, AA19, AA22, AB3, AB24, AD4, AD7, AD10, AD13, AD16, AD19, AD22, AE1, AE25	
HDMI_REF	J1	
HDMI_VP	L7	_
HDMI_VPH	M7	_
NVCC_CSI	N7	Supply of the camera sensor interface
NVCC_DRAM	R18, T18, U18, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18	Supply of the DDR interface
NVCC_EIM	K19, L19, M19	Supply of the EIM interface
NVCC_ENET	R19	Supply of the ENET interface
NVCC_GPIO	P7	Supply of the GPIO interface
NVCC_JTAG	J7	Supply of the JTAG tap controller interface
NVCC_LCD	P19	Supply of the LCD interface
NVCC_LVDS2P5	V7	Supply of the LVDS display interface and DDR pre-drivers
NVCC_MIPI	К7	Supply of the MIPI interface
NVCC_NANDF	G15	Supply of the raw NAND Flash memories interface
NVCC_PLL_OUT	E8	—
NVCC_RGMII	G18	Supply of the ENET interface
NVCC_SD1	G16	Supply of the SD card interface
NVCC_SD2	G17	Supply of the SD card interface
NVCC_SD3	G14	Supply of the SD card interface

Package Information and Contact Assignments

Dell Name	Befor	re Reset State					
Dan Name	Input/Output	Value					
EIM_A20	Input	PD (100K)					
EIM_A21	Input	PD (100K)					
EIM_A22	Input	PD (100K)					
EIM_A23	Input	PD (100K)					
EIM_A24	Input	PD (100K)					
EIM_A25	Input	PD (100K)					
EIM_DA0	Input	PD (100K)					
EIM_DA1	Input	PD (100K)					
EIM_DA2	Input	PD (100K)					
EIM_DA3	Input	PD (100K)					
EIM_DA4	Input	PD (100K)					
EIM_DA5	Input	PD (100K)					
EIM_DA6	Input	PD (100K)					
EIM_DA7	Input	PD (100K)					
EIM_DA8	Input	PD (100K)					
EIM_DA9	Input	PD (100K)					
EIM_DA10	Input	PD (100K)					
EIM_DA11	Input	PD (100K)					
EIM_DA12	Input	PD (100K)					
EIM_DA13	Input	PD (100K)					
EIM_DA14	Input	PD (100K)					
EIM_DA15	Input	PD (100K)					
EIM_EB0	Input	PD (100K)					
EIM_EB1	Input	PD (100K)					
EIM_EB2	Input	PD (100K)					
EIM_EB3	Input	PD (100K)					
EIM_LBA	Input	PD (100K)					
EIM_RW	Input	PD (100K)					
EIM_WAIT	Input	PD (100K)					
GPIO_17	Output	Drive state unknown (x)					

Table 98. Signals with Differing Before Reset and After Reset States (continued)

Package Information and Contact Assignments

	-	7	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
F	GPIO_2	GPIO_9	GPIO_6	GPIO_1	GPIO_0	KEY_COL4	KEY_ROW3	GND	VDDARM_IN	VDDSOC_CAP	GND	GND	VDDSOC_CAP	VDDSOC_CAP	GND	VDDSOC_IN	GND	NVCC_DRAM	GND	DISP0_DAT21	DISP0_DAT16	DISP0_DAT15	DISP0_DAT11	DISP0_DAT12	DISP0_DAT9	F
D	LVDS0_TX0_P	LVDS0_TX0_N	LVDS0_TX1_P	LVDS0_TX1_N	KEY_COL3	KEY_ROW1	KEY_COL1	GND	VDDARM_IN	VDDSOC_CAP	GND	GND	VDDSOC_CAP	VDDSOC_CAP	GND	VDDSOC_IN	GND	NVCC_DRAM	GND	ENET_TXD0	ENET_CRS_DV	DISP0_DAT20	DISP0_DAT19	DISP0_DAT17	DISP0_DAT14	D
>	LVDS0_TX2_P	LVDS0_TX2_N	LVDS0_CLK_P	LVDS0_CLK_N	KEY_ROW4	KEY_ROW0	NVCC_LVDS2P5	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	ENET_MDC	ENET_TX_EN	ENET_REF_CLK	ENET_MDIO	DISP0_DAT22	DISP0_DAT18	>
8	LVDS0_TX3_P	LVDS0_TX3_N	GND	KEY_ROW2	KEY_COL0	KEY_COL2	GND	GND	GND	GND	GND	GND	GND	DRAM_A4	GND	GND	GND	GND	GND	ENET_TXD1	ENET_RXD0	ENET_RXD1	ENET_RX_ER	DISP0_DAT23	NC	×
7	LVDS1_TX0_N	LVDS1_TX0_P	LVDS1_CLK_N	LVDS1_CLK_P	GND	DRAM_RESET	DRAM_D20	DRAM_D21	DRAM_D19	DRAM_D25	DRAM_SDCKE0	DRAM_A15	DRAM_A7	DRAM_A3	DRAM_SDBA1	DRAM_CS0	NC	NC	NC	NC	NC	NC	NC	GND	NC	٢
AA	LVDS1_TX1_P	LVDS1_TX1_N	LVDS1_TX3_N	LVDS1_TX3_P	DRAM_D3	DRAM_D10	GND	DRAM_D17	DRAM_D23	GND	DRAM_SDCKE1	DRAM_A14	GND	DRAM_A2	DRAM_A10	GND	NC	NC	GND	NC	NC	GND	NC	NC	NC	AA
AB	LVDS1_TX2_N	LVDS1_TX2_P	GND	DRAM_D6	DRAM_D12	DRAM_D14	DRAM_D16	DRAM_DQM2	DRAM_D18	DRAM_SDQS3_B	DRAM_D27	DRAM_SDBA2	DRAM_A8	DRAM_A1	DRAM_RAS	DRAM_SDWE	DRAM_SDODT1	NC	NO	NC	NO	NO	NC	GND	NC	AB
AC	DRAM_D4	DRAM_VREF	DRAM_DQM0	DRAM_D2	DRAM_D13	DRAM_DQM1	DRAM_D15	DRAM_D22	DRAM_D28	DRAM_SDQS3	DRAM_D31	DRAM_A11	DRAM_A6	DRAM_A0	DRAM_SDBA0	DRAM_SDODT0	DRAM_A13	NC	NC	NC	NC	NC	NC	NC	NC	AC

Table 99. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued)