

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1GHz
Co-Processors/DSP	Multimedia; NEON [™] SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6u1avm10ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modules List

Signal Name	Remarks
DRAM_VREF	When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 k Ω 0.5% resistor to GND and a 1 k Ω 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 μ F capacitor.
	To reduce supply current, a pair of 1.5 k Ω 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when four DDR3 ICs plus the i.MX 6Solo/6DualLite are drawing current on the resistor divider.
	It is recommended to use regulated power supply for "big" memory configurations (more that eight devices).
ZQPAD	DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND.
NVCC_LVDS_2P5	The DDR pre-drivers share the NVCC_LVDS_2P5 ball with the LVDS interface. This ball can be shorted to VDD_HIGH_CAP on the circuit board.
VDD_FA FA_ANA	These signals are reserved for NXP manufacturing use only. User must tie both connections to GND.
GPANAIO	Analog output for NXP use only. This output must remain unconnected.
JTAG_nnnn	The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up.
	JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and must be avoided.
	JTAG_MOD is referenced as SJC_MOD in the i.MX 6Solo/6DualLite reference manual. Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k Ω) is allowed. JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain.
NC	These signals are No Connect (NC) and must remain unconnected by the user.
SRC_POR_B	This cold reset negative logic input resets all modules and logic in the IC.
ONOFF	In normal mode may be connected to ON/OFF button (De-bouncing provided at this input). Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes "forced" OFF.
TEST_MODE	TEST_MODE is for NXP factory use. This signal is internally connected to an on-chip pull-down device. This signal must either be tied to Vss or remain unconnected.
PCIE_REXT	The impedance calibration process requires connection of reference resistor 200 Ω 1% precision resistor on PCIE_REXT pad to ground.
CSI_REXT	MIPI CSI PHY reference resistor. Use 6.04 K Ω 1% resistor connected between this pad and GND
DSI_REXT	MIPI DSI PHY reference resistor. Use 6.04 K Ω 1% resistor connected between this pad and GND

Table 10. Maximum Supply Currents (continued)

Power Line	Conditions	Max Current	Unit
NVCC_LVDS2P5 ⁶	_	NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5.	
	MISC		
DDR_VREF	_	1	mA

The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies).

- ² Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown in Table 10. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
- ³ This is the maximum current per active USB physical interface.
- ⁴ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios.
- ⁵ General equation for estimated, maximum power consumption of an IO power supply:
- $Imax = N \times C \times V \times (0.5 \times F)$

Where:

1

- N—Number of IO pins supplied by the power line
- C—Equivalent external capacitive load
- V—IO voltage
- (0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
- In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
- ⁶ NVCC_LVDS2P5 is supplied by VDD_HIGH_CAP (by external connection) so the maximum supply current is included in the current shown for VDD_HIGH_IN. The maximum supply current for NVCC_LVDS2P5 has not been characterized separately.

4.1.6 Low Power Mode Supply Currents

Table 11 shows the current core consumption (not including I/O) of i.MX 6Solo/6DualLite processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Units
WAIT	• ARM, SoC, and PU LDOs are set to 1.225	VDD_ARM_IN (1.4V)	4.5	
	 HIGH LDO set to 2.5 V Clocks are gated. DDR is in self refresh. PLLs are active in bypass (24MHz) 	VDD_SOC_IN (1.4V)	23	mA
		VDD_HIGH_IN (3.0V)	13.5	
	Supply Voltages remain ON	Total	79	mW

Table 11	. Stop	Mode	Current	and Pow	er Consi	umption
----------	--------	------	---------	---------	----------	---------

4.2.1 Power-Up Sequence

The restrictions that follow must be observed:

- VDD_SNVS_IN supply must be turned on before any other power supply or be connected (shorted) with VDD_HIGH_IN supply.
- If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on.
- The SRC_POR_B signal controls the processor POR and must be immediately asserted at power-up and remain asserted until the VDD_ARM_CAP, VDD_SOC_CAP, and VDD_PU_CAP supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either order with no restrictions.

NOTE

Ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies).

NOTE

USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply sequence and may be powered at any time.

4.2.2 Power-Down Sequence

No special restrictions for i.MX 6Solo/6DualLite IC.

4.2.3 **Power Supplies Usage**

All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of Section 6, "Package Information and Contact Assignments."

NOTE

When the PCIE interface is not used, the PCIE_VP, PCIE_VPH, and PCIE_VPTX supplies must be powered or grounded. The input and output supplies for the remaining ports (PCIE_REXT, PCIE_RX_N, PCIE_RX_P, PCIE_TX_N, and PCIE_TX_P) can remain unconnected. It is recommended not to turn the PCIE_VPH supply OFF while the PCIE_VP supply is ON, as it may lead to excessive power consumption. If boundary scan test is used, PCIE_VP, PCIE_VPH, and PCIE_VPTX must remain powered.

4.3 Integrated LDO Voltage Regulator Parameters

Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use

4.4 PLL's Electrical Characteristics

4.4.1 Audio/Video PLL's Electrical Parameters

Table 15. Audio/Video PLL's Electrical Parameters

Parameter	Value
Clock output range	650 MHz ~1.3 GHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

4.4.2 528 MHz PLL

Table 16. 528 MHz PLL's Electrical Parameters

Parameter	Value
Clock output range	528 MHz PLL output
Reference clock	24 MHz
Lock time	<11250 reference cycles

4.4.3 Ethernet PLL

Table 17. Ethernet PLL's Electrical Parameters

Parameter	Value
Clock output range	500 MHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

4.4.4 480 MHz PLL

Table 18. 480 MHz PLL's Electrical Parameters

Parameter	Value
Clock output range	480 MHz PLL output
Reference clock	24 MHz
Lock time	<383 reference cycles

Figure 4. Circuit for Parameters Voh and Vol for I/O Cells

4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters

Table 22 shows the DC parameters for the clock inputs.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
XTALI high-level DC input voltage	Vih	—	0.8 x NVCC_PLL	—	NVCC_PLL	V
XTALI low-level DC input voltage	Vil	—	0	—	0.2V	V
RTC_XTALI high-level DC input voltage	Vih	—	0.8	—	1.1 ¹	V
RTC_XTALI low-level DC input voltage	Vil	—	0	—	0.2	V
Input capacitance	C _{IN}	Simulated data	_	5	—	pF
XTALI input leakage current at startup	I _{XTALI_STARTUP}	Power-on startup for 0.15msec with a driven 24MHz clock @ 1.1V. ²	—	—	600	μA
DC input current	I _{XTALI_DC}	—	—	—	2.5	μA

Table 22. XTALI and RTC_XTALI DC Parameters

¹ This voltage specification must not be exceeded and, as such, is an absolute maximum specification.

² This current draw is present even if an external clock source directly drives XTALI. The 24 MHz oscillator cell is powered from NVCC_PLL_OUT.

NOTE

The Vil and Vih specifications only apply when an external clock source is used. If a crystal is used, Vil and Vih do not apply.

4.6.2 General Purpose I/O (GPIO) DC Parameters

Table 23 shows DC parameters for GPIO pads. The parameters in Table 23 are guaranteed per the operating ranges in Table 8, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Max	Unit
Output Differential Voltage	VOD	Rload-50 Ω Diff	300	500	mV
Output High Voltage	VOH	Rload-50 Ω Diff	1.25	1.75	V
Output Low Voltage	VOL	Rload-50 Ω Diff	0.75	1.25	V
Common-mode output voltage ((Vpadp*+Vpadn*)/2)	Vocm	Rload-50Ω Diff	1	1.5	V
Differential output impedance	Zo	—	1.6	_	kΩ

Table 28. MLB I/O DC Characteristics

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 5 and Figure 6.

CL includes package, probe and fixture capacitance

Figure 5. Load Circuit for Output

4.7.1 General Purpose I/O AC Parameters

The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers.

NOTE

GPIO and DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 10).

Figure 10. Impedance Matching Load for Measurement

ID	Parameter	Symbol	Timing T = GPMI Clock (Cycle	Unit
			Min	Мах	
NF28	Data write setup	tDS ⁶	0.25 × tCK - 0.32	—	ns
NF29	Data write hold	tDH ⁶	0.25 × tCK - 0.79	—	ns
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ ⁷	—	3.18	
NF31	NAND_DQS/NAND_DQ read hold skew	tQHS ⁷	—	3.27	

Table 48. Samsung Toggle Mode Timing Parameters¹ (continued)

¹ The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

⁴ CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level.

⁵ PRE_DELAY+1) \geq (AS+DS).

⁶ Shown in Figure 34, Samsung Toggle Mode Data Write Timing diagram.

⁷ Shown in Figure 33, NAND_DQS/NAND_DQ Read Valid Window.

For DDR Toggle mode, Figure 33 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11 External Peripheral Interface Parameters

The following subsections provide information on external peripheral interfaces.

4.11.1 AUDMUX Timing Parameters

The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document.

4.11.2 ECSPI Timing Parameters

This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes.

4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 51 shows the interface timing values. The number field in the table refers to timing signals found in Figure 38 and Figure 39.

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
62	Clock cycle ⁴	t _{SSICC}	$\begin{array}{c} 4 \times T_{\text{C}} \\ 4 \times T_{\text{C}} \end{array}$	30.0 30.0	_	i ck i ck	ns
63	Clock high period: • For internal clock • For external clock	_	$2 \times T_{C} - 9.0$ $2 \times T_{C}$	6 15		_	ns
64	Clock low period: • For internal clock • For external clock	_	$2 \times T_{c} - 9.0$ $2 \times T_{c}$	6 15		_	ns
65	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high	_	_	_	17.0 7.0	x ck i ck a	ns
66	ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low	_	_	_	17.0 7.0	x ck i ck a	ns
67	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) high ⁵		_	_	19.0 9.0	x ck i ck a	ns
68	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low ⁵	_	_	_	19.0 9.0	x ck i ck a	ns
69	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wI) high	_	_	_	16.0 6.0	x ck i ck a	ns
70	ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) low		_	_	17.0 7.0	x ck i ck a	ns
71	Data in setup time before ESAI_RX_CLK (SCK in synchronous mode) falling edge	_	_	12.0 19.0	_	x ck i ck	ns
72	Data in hold time after ESAI_RX_CLK falling edge	_	_	3.5 9.0	_	x ck i ck	ns
73	ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK falling edge ⁵		_	2.0 12.0	_	x ck i ck a	ns
74	ESAI_RX_FS input (wl) high before ESAI_RX_CLK falling edge	_	_	2.0 12.0	_	x ck i ck a	ns
75	ESAI_RX_FS input hold time after ESAI_RX_CLK falling edge	_	_	2.5 8.5	_	x ck i ck a	ns
78	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high		_		18.0 8.0	x ck i ck	ns
79	ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low			_	20.0 10.0	x ck i ck	ns
80	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) high ⁵	—		_	20.0 10.0	x ck i ck	ns

Table 51. Enhanced Serial Audio Interface (ESAI) Timing Parameters

Symbol	Parameter	Condition	Min	Тур	Max	Unit					
		TMDS drivers DC specificat	ions								
V _{OFF}	Single-ended standby voltage	$RT = 50 \Omega$	avo	avddtmds ± 10 mV							
V _{SWING}	Single-ended output swing voltage	and definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	_	600	mV					
V _H	Single-ended output high voltage	If attached sink supports TMDSCLK < or = 165 MHz	avo	ddtmds ± 10	mV	mV					
	figure above	If attached sink supports TMDSCLK > 165 MHz	avddtmds - 200 mV	—	avddtmds + 10 mV	mV					
VL	Single-ended output low voltage	If attached sink supports TMDSCLK < or = 165 MHz	avddtmds - 600 mV	—	avddtmds - 400mV	mV					
	figure above	If attached sink supports TMDSCLK > 165 MHz	avddtmds - 700 mV	—	avddtmds - 400 mV	mV					
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see Figure 53). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.	_	50		200	Ω					
	Hot plug detect specifications										
HPD ^{VH}	Hot plug detect high range	—	2.0	_	5.3	V					
VHPD VL	Hot plug detect low range	_	0		0.8	V					
HPD z	Hot plug detect input impedance	_	10	—	_	kΩ					
HPD	Hot plug detect time delay	_	—		100	μs					

Table 61. Electrical Characteristics (continued)

4.11.8 Switching Characteristics

Table 62 describes switching characteristics for the HDMI 3D Tx PHY. Figure 54 to Figure 58 illustrate various parameters specified in table.

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

4.11.13.2 Pipelined Data Flow

Figure 75. Pipelined Data Flow Ready Signal Timing (Frame Transmission Mode)

Figure 76. Receiver Real-Time Data Flow READY Signal Timing

Figure 77. Synchronized Data Flow Transmission with WAKE

4.11.19 SSI Timing Parameters

This section describes the timing parameters of the SSI module. The connectivity of the serial synchronous interfaces are summarized in Table 81.

Port	Signal Nomenclature Type and Access							
AUDMUX port 1	SSI 1	Internal						
AUDMUX port 2	SSI 2	Internal						
AUDMUX port 3	AUD3	External—AUD3 I/O						
AUDMUX port 4	AUD4	External—EIM or CSPI1 I/O through IOMUXC						
AUDMUX port 5	AUD5	External—EIM or SD1 I/O through IOMUXC						
AUDMUX port 6	AUD6	External—EIM or DISP2 through IOMUXC						
AUDMUX port 7	SSI 3	Internal						

Table 81. AUDMUX Port Allocation

NOTE

The terms WL and BL used in the timing diagrams and tables refer to Word Length (WL) and Bit Length (BL).

4.11.19.1 SSI Transmitter Timing with Internal Clock

Figure 91 depicts the SSI transmitter internal clock timing and Table 82 lists the timing parameters for the SSI transmitter internal clock.

4.11.19.3 SSI Transmitter Timing with External Clock

Figure 93 depicts the SSI transmitter external clock timing and Table 84 lists the timing parameters for the transmitter timing with the external clock.

Figure 93. SSI Transmitter External Clock Timing Diagram

ID	Parameter	Min	Мах	Unit								
	External Clock Operation											
SS22	AUDx_TXC/AUDx_RXC clock period	81.4	—	ns								
SS23	AUDx_TXC/AUDx_RXC clock high period	36.0	_	ns								
SS24	AUDx_TXC/AUDx_RXC clock rise time	—	6.0	ns								
SS25	AUDx_TXC/AUDx_RXC clock low period	36.0	_	ns								
SS26	AUDx_TXC/AUDx_RXC clock fall time	—	6.0	ns								
SS27	AUDx_TXC high to AUDx_TXFS (bl) high	-10.0	15.0	ns								
SS29	AUDx_TXC high to AUDx_TXFS (bl) low	10.0		ns								
SS31	AUDx_TXC high to AUDx_TXFS (wl) high	-10.0	15.0	ns								
SS33	AUDx_TXC high to AUDx_TXFS (wl) low	10.0	_	ns								
SS37	AUDx_TXC high to AUDx_TXD valid from high impedance	—	15.0	ns								
SS38	AUDx_TXC high to AUDx_TXD high/low	—	15.0	ns								
SS39	AUDx_TXC high to AUDx_TXD high impedance	—	15.0	ns								

Table 84. SSI Transmitter Timing with External Clock

4.11.21.2 Receive Timing

Figure 100. USB HSIC Receive Waveform

Table 92. USB HSIC Receive Parameters¹

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	_
Thold	data hold time	300	—	ps	Measured at 50% point
Tsetup	data setup time	365	—	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

The timings in the table are guaranteed when:

1

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

4.11.22 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: USB 2.0 Phase Locked SOFs
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification

Boot Mode Configuration

- Revision 2.0 plus errata and ecn June 4, 2010
- Battery Charging Specification (available from USB-IF)
 - Revision 1.2, December 7, 2010
 - Portable device only

5 Boot Mode Configuration

This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.

5.1 Boot Mode Configuration Pins

Table 93 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is '0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6Solo/6DualLite Fuse Map document and the System Boot chapter in *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)*.

Pin	Direction at Reset	eFuse Name				
	Boot Mode Selection					
BOOT_MODE1	Input	N/A				
BOOT_MODE0	Input	N/A				
	Boot Options ¹					
EIM_DA0	Input	BOOT_CFG1[0]				
EIM_DA1	Input	BOOT_CFG1[1]				
EIM_DA2	Input	BOOT_CFG1[2]				
EIM_DA3	Input	BOOT_CFG1[3]				
EIM_DA4	Input	BOOT_CFG1[4]				
EIM_DA5	Input	BOOT_CFG1[5]				
EIM_DA6	Input	BOOT_CFG1[6]				
EIM_DA7	Input	BOOT_CFG1[7]				
EIM_DA8	Input	BOOT_CFG2[0]				
EIM_DA9	Input	BOOT_CFG2[1]				
EIM_DA10	Input	BOOT_CFG2[2]				
EIM_DA11	Input	BOOT_CFG2[3]				
EIM_DA12	Input	BOOT_CFG2[4]				
EIM_DA13	Input	BOOT_CFG2[5]				

Table 93. Fuses and Associated Pins Used for Boot

Interface	IP Instance	Allocated Pads During Boot	Comment
SPI	ECSPI-4	EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25, EIM_D24, EIM_D25	_
EIM	EIM	EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4], CSI0_DATA_EN, CSI0_VSYNC	Used for NOR, OneNAND boot Only CS0 is supported
NAND Flash	GPMI	NANDF_CLE, NANDF_ALE, NANDF_WP_B, SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0, NANDF_CS0, NANDF_CS1, NANDF_CS2, NANDF_CS3, NANDF_D[7:0]	8 bit Only CS0 is supported
SD/MMC	USDHC-1	SD1_CLK, SD1_CMD, SD1_DAT0, SD1_DAT1, SD1_DAT2, SD1_DAT3, GPIO_1, NANDF_D0, NANDF_D1, NANDF_D2, NANDF_D3, KEY_COL1	1, 4, or 8 bit
SD/MMC	USDHC-2	SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1, SD2_DAT2, SD2_DAT3, GPIO_4, NANDF_D4, NANDF_D5, NANDF_D6, NANDF_D7, KEY_ROW1	1, 4, or 8 bit
SD/MMC	USDHC-3	SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1, SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5, SD3_DAT6, SD3_DAT7, SD3_RST, GPIO_18	1, 4, or 8 bit
SD/MMC	USDHC-4	SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1, SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5, SD4_DAT6, SD4_DAT7, NANDF_ALE, NANDF_CS1	1, 4, or 8 bit
l ² C	l ² C-1	EIM_D28, EIM_D21	_
l ² C	l ² C-2	EIM_D16, EIM_EB2	-
l ² C	l ² C-3	EIM_D18, EIM_D17	_
USB	USB-OTG PHY	USB_OTG_DP USB_OTG_DN USB_OTG_VBUS	_

Table 94. Interface Allocation During Boot (continued)

6 Package Information and Contact Assignments

This section includes the contact assignment information and mechanical package drawing.

6.1 Updated Signal Naming Convention

The signal names of the i.MX6 series of products have been standardized to better align the signal names within the family and across the documentation. Some of the benefits of these changes are as follows:

- The names are unique within the scope of an SoC and within the series of products
- Searches will return all occurrences of the named signal
- The names are consistent between i.MX 6 series products implementing the same modules
- The module instance is incorporated into the signal name

This change applies only to signal names. The original ball names have been preserved to prevent the need to change schematics, BSDL models, IBIS models, etc.

Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Output	Value ²		
EIM_BCLK	N22	NVCC_EIM	GPIO	ALT0	EIM_BCLK	Output	Low		
EIM_CS0	H24	NVCC_EIM	GPIO	ALT0	EIM_CS0	Output	High		
EIM_CS1	J23	NVCC_EIM	GPIO	ALT0	EIM_CS1	Output	High		
EIM_D16	C25	NVCC_EIM	GPIO	ALT5	GPIO3_IO16	Input	100 k Ω pull-up		
EIM_D17	F21	NVCC_EIM	GPIO	ALT5	GPIO3_IO17	Input	100 kΩ pull-up		
EIM_D18	D24	NVCC_EIM	GPIO	ALT5	GPIO3_IO18	Input	100 kΩ pull-up		
EIM_D19	G21	NVCC_EIM	GPIO	ALT5	GPIO3_IO19	Input	100 k Ω pull-up		
EIM_D20	G20	NVCC_EIM	GPIO	ALT5	GPIO3_IO20	Input	100 kΩ pull-up		
EIM_D21	H20	NVCC_EIM	GPIO	ALT5	GPIO3_IO21	Input	100 kΩ pull-up		
EIM_D22	E23	NVCC_EIM	GPIO	ALT5	GPIO3_IO22	Input	100 k Ω pull-down		
EIM_D23	D25	NVCC_EIM	GPIO	ALT5	GPIO3_IO23	Input	100 kΩ pull-up		
EIM_D24	F22	NVCC_EIM	GPIO	ALT5	GPIO3_IO24	Input	100 k Ω pull-up		
EIM_D25	G22	NVCC_EIM	GPIO	ALT5	ALT5 GPIO3_IO25		100 k Ω pull-up		
EIM_D26	E24	NVCC_EIM	GPIO	ALT5	LT5 GPIO3_IO26		100 k Ω pull-up		
EIM_D27	E25	NVCC_EIM	GPIO	ALT5	ALT5 GPIO3_IO27		100 kΩ pull-up		
EIM_D28	G23	NVCC_EIM	GPIO	ALT5 GPIO3_IO28		Input	100 k Ω pull-up		
EIM_D29	J19	NVCC_EIM	GPIO	ALT5	GPIO3_IO29	Input	100 k Ω pull-up		
EIM_D30	J20	NVCC_EIM	GPIO	ALT5	GPIO3_IO30	Input	100 k Ω pull-up		
EIM_D31	H21	NVCC_EIM	GPIO	ALT5	GPIO3_IO31	Input	100 k Ω pull-down		
EIM_DA0	L20	NVCC_EIM	GPIO	ALT0	EIM_AD00	Input	100 k Ω pull-up		
EIM_DA1	J25	NVCC_EIM	GPIO	ALT0	EIM_AD01	Input	100 k Ω pull-up		
EIM_DA10	M22	NVCC_EIM	GPIO	ALT0	EIM_AD10	Input	100 k Ω pull-up		
EIM_DA11	M20	NVCC_EIM	GPIO	ALT0	EIM_AD11	Input	100 k Ω pull-up		
EIM_DA12	M24	NVCC_EIM	GPIO	ALT0	EIM_AD12	Input	100 k Ω pull-up		
EIM_DA13	M23	NVCC_EIM	GPIO	ALT0	EIM_AD13	Input	100 kΩ pull-up		
EIM_DA14	N23	NVCC_EIM	GPIO	ALT0	EIM_AD14		100 kΩ pull-up		
EIM_DA15	N24	NVCC_EIM	GPIO	ALT0	EIM_AD15	Input	100 kΩ pull-up		
EIM_DA2	L21	NVCC_EIM	GPIO	ALTO EIM_AD02		Input	100 k Ω pull-up		
EIM_DA3	K24	NVCC_EIM	GPIO	ALT0	EIM_AD03	Input	100 k Ω pull-up		
EIM_DA4	L22	NVCC_EIM	GPIO	ALT0	EIM_AD04	Input	100 kΩ pull-up		
EIM_DA5	L23	NVCC_EIM	GPIO	ALT0	EIM_AD05	Input	100 kΩ pull-up		
EIM_DA6	K25	NVCC_EIM	GPIO	ALT0	EIM_AD06	Input	100 kΩ pull-up		
EIM_DA7	L25	NVCC_EIM	GPIO	ALTO EIM_AD07 Inp		Input	100 k Ω pull-up		
EIM_DA8	L24	NVCC_EIM	GPIO	ALT0	EIM_AD08	Input	100 k Ω pull-up		
EIM_DA9	M21	NVCC_EIM	GPIO	ALT0	EIM_AD09	Input	100 kΩ pull-up		
EIM_EB0	K21	NVCC_EIM	GPIO	ALT0	EIM_EB0	Output	High		

Table 97. 21 x 21 mm Functional Contact Assignments (continued)

	AE	AD	
GND		DRAM_D5	F
DRAM_D1		DRAM_D0	2
DRAM_SDQ	80	DRAM_SDQS0_B	e
DRAM_D7		GND	4
DRAM_D9		DRAM_D8	5
DRAM_SDQS1	۵	DRAM_SDQS1	9
DRAM_D11		GND	7
DRAM_SDQS2	۵	DRAM_SDQS2	8
DRAM_D24		DRAM_D29	6
DRAM_DQM3	~	GND	10
DRAM_D26		DRAM_D30	11
DRAM_A9		DRAM_A12	12
DRAM_A5		GND	13
DRAM_SDCLK_1	ш	DRAM_SDCLK_1	14
DRAM_SDCLK_C	ш	DRAM_SDCLK_0	15
DRAM_CAS		GND	16
ZQPAD		DRAM_CS1	17
NC		NC	18
NC		GND	19
NC		ON	20
NC		OZ	21
NC		GND	22
NC		OZ	23
NC		NC	24
GND		NC	25
AE		AD	

Table 99. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued)

Table 100 shows the 21 x 21 mm, 0.8 mm pitch ball map for the i.MX 6DualLite.

Table 100. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite

	-	2	S	4	5	9	2	8	ი	10	÷	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
A		PCIE_REXT	PCIE_TXM	GND	FA_ANA	USB_OTG_DP	XTALI	GND	MLB_SN	MLB_DP	MLB_CN	NC	GND	NC	SD3_DAT2	NANDF_ALE	NANDF_CS2	NANDF_D0	NANDF_D4	SD4_DAT3	SD1_DAT0	SD2_DAT0	SD2_DAT2	RGMII_TD3	GND	A
B	PCIE_RXM	PCIE_RXP	PCIE_TXP	GND	VDD_FA	USB_OTG_DN	XTALO	USB_OTG_CHD_B	MLB_SP	MLB_DN	MLB_CP	NC	SD3_CMD	NC	SD3_DAT3	NANDF_RB0	SD4_CMD	NANDF_D5	SD4_DAT1	SD4_DAT6	SD1_CMD	SD2_DAT3	RGMII_RD1	RGMII_RD2	RGMII_RXC	В
ပ	GND	JTAG_TRSTB	JTAG_TMS	GND	CLK2_N	GND	CLK1_N	GPANAIO	RTC_XTALO	GND	POR_B	BOOT_MODE0	SD3_DAT5	NC	NANDF_CLE	NANDF_CS1	NANDF_D1	NANDF_D7	SD4_DAT5	SD1_DAT1	SD2_CLK	RGMII_TD0	RGMII_TX_CTL	RGMIL_RD0	EIM_D16	C
D	CSI_D1M	CSI_D1P	GND	CSI_REXT	CLK2_P	GND	CLK1_P	GND	RTC_XTALI	USB_H1_VBUS	PMIC_ON_REQ	ONOFF	SD3_DAT4	SD3_CLK	SD3_RST	NANDF_CS3	NANDF_D3	SD4_DAT0	SD4_DAT7	SD1_CLK	RGMII_TXC	RGMII_RX_CTL	RGMII_RD3	EIM_D18	EIM_D23	۵

Table 100. 21 x 21 mm, 0.8 mm Pitch Ball Ma	ap i.MX 6DualLite (continued)
---	-------------------------------

	-	7	e	4	5	9	2	œ	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
z	CSI0_DAT4	CSI0_VSYNC	CSI0_DAT7	CSI0_DAT6	CSI0_DAT9	CSI0_DAT8	NVCC_CSI	GND	VDDARM_IN	GND	VDDARM_CAP	NC	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	DI0_DISP_CLK	DI0_PIN3	DI0_PIN15	EIM_BCLK	EIM_DA14	EIM_DA15	DI0_PIN2	z
٩	CSI0_PIXCLK	CSI0_DAT5	CSI0_DATA_EN	CSI0_MCLK	GPIO_19	GPIO_18	NVCC_GPIO	GND	VDDARM_IN	GND	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND		VDDPU_CAP	GND	NVCC_LCD	DISP0_DAT4	DISP0_DAT3	DISP0_DAT1	DISP0_DAT2	DISP0_DAT0	DI0_PIN4	٩
æ	GPI0_17	GPIO_16	GPIO_7	GPIO_5	GPIO_8	GPIO_4	GPIO_3	GND	VDDARM_IN	VDDSOC_CAP	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	GND	NVCC_DRAM	NVCC_ENET	DISP0_DAT13	DISP0_DAT10	DISP0_DAT8	DISP0_DAT6	DISP0_DAT7	DISP0_DAT5	æ
F	GPIO_2	GPIO_9	GPIO_6	GPIO_1	GPIO_0	KEY_COL4	KEY_ROW3	GND	VDDARM_IN	VDDSOC_CAP	GND	GND	VDDSOC_CAP	VDDSOC_CAP	GND		GND	NVCC_DRAM	GND	DISP0_DAT21	DISP0_DAT16	DISP0_DAT15	DISP0_DAT11	DISP0_DAT12	DISP0_DAT9	F
Ъ	LVDS0_TX0_P	LVDS0_TX0_N	LVDS0_TX1_P	LVDS0_TX1_N	KEY_COL3	KEY_ROW1	KEY_COL1	GND	VDDARM_IN	VDDSOC_CAP	GND	GND	VDDSOC_CAP	VDDSOC_CAP	GND	VDDSOC_IN	GND	NVCC_DRAM	GND	ENET_TXD0	ENET_CRS_DV	DISP0_DAT20	DISP0_DAT19	DISP0_DAT17	DISP0_DAT14	D
>	LVDS0_TX2_P	LVDS0_TX2_N	LVDS0_CLK_P	LVDS0_CLK_N	KEY_ROW4	KEY_ROW0	NVCC_LVDS2P5	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	ENET_MDC	ENET_TX_EN	ENET_REF_CLK	ENET_MDIO	DISP0_DAT22	DISP0_DAT18	>
Ν	LVDS0_TX3_P	LVDS0_TX3_N	GND	KEY_ROW2	KEY_COL0	KEY_COL2	GND	GND	GND	GND	GND	GND	GND	DRAM_A4	GND	GND	GND	GND	GND	ENET_TXD1	ENET_RXD0	ENET_RXD1	ENET_RX_ER	DISP0_DAT23	DRAM_D63	×
٨	LVDS1_TX0_N	LVDS1_TX0_P	LVDS1_CLK_N	LVDS1_CLK_P	GND	DRAM_RESET	DRAM_D20	DRAM_D21	DRAM_D19	DRAM_D25	DRAM_SDCKE0	DRAM_A15	DRAM_A7	DRAM_A3	DRAM_SDBA1	DRAM_CS0	DRAM_D36	DRAM_D37	DRAM_D40	DRAM_D44	DRAM_DQM7	DRAM_D59	DRAM_D62	GND	DRAM_D58	7