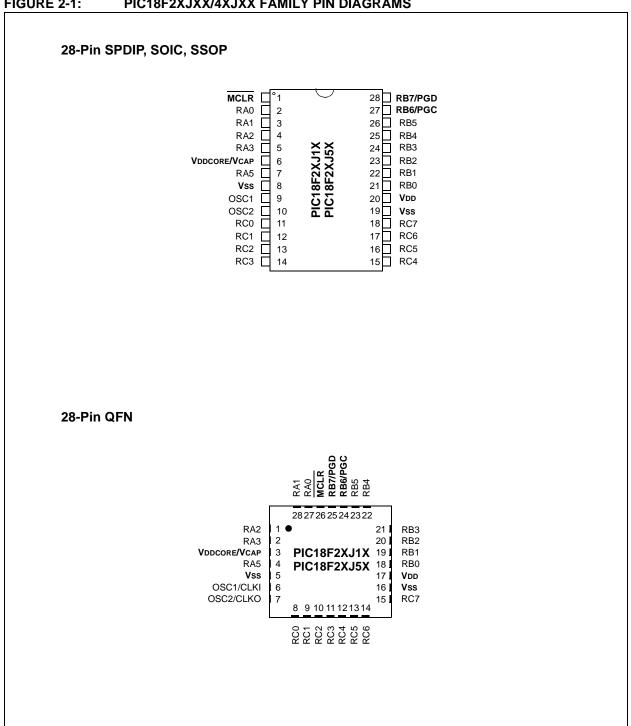
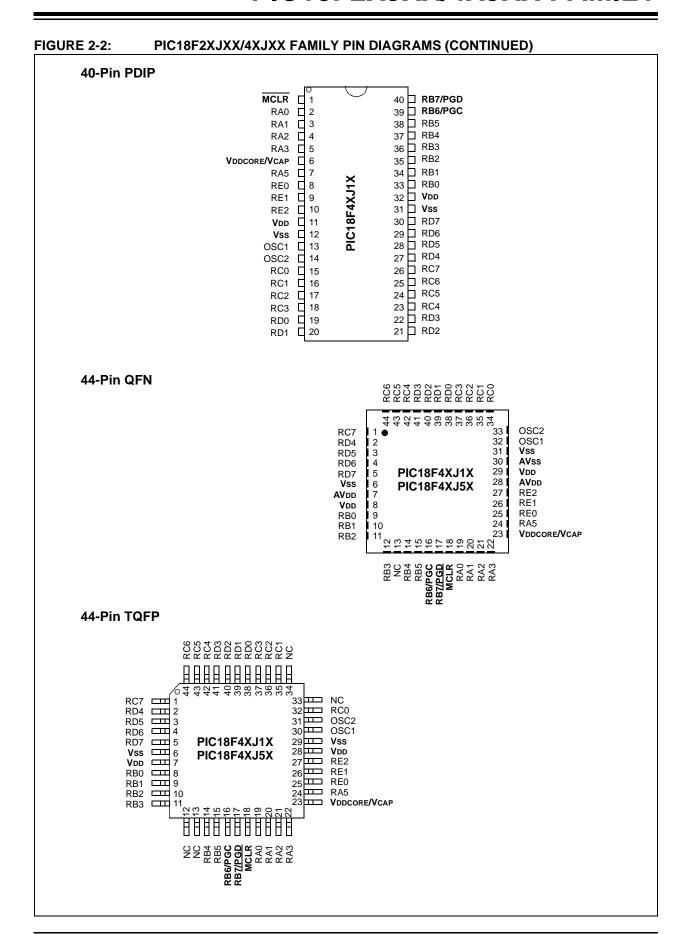


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

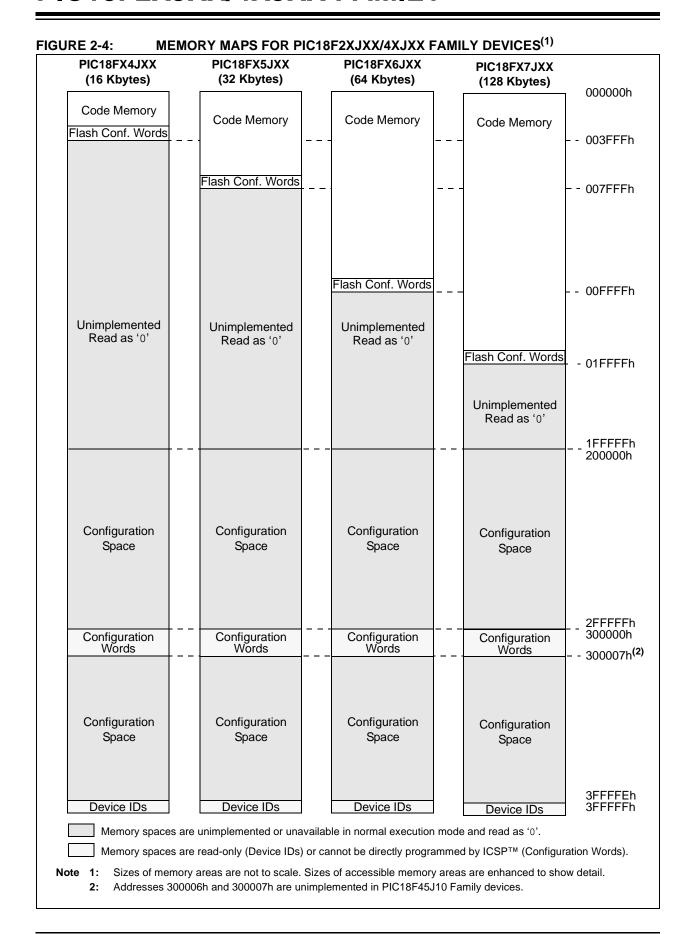
Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24j50t-i-ss

FIGURE 2-1: PIC18F2XJXX/4XJXX FAMILY PIN DIAGRAMS

The Configuration Words for these devices are located at addresses 300000h through 300007h. These are implemented as three pairs of volatile memory registers. Each register is automatically loaded from a copy stored at the end of program memory. For this reason, the last four words (or eight bytes) of the code space (also called the Flash Configuration Words) should be written with Configuration data and not executable code. The addresses of the Flash Configuration Words are listed in Table 2-2. Refer to section Section 5.0 "Configuration Word" for more information.

Locations 3FFFFEh and 3FFFFFh are reserved for the Device ID bits. These bits, which may be used by the programmer to identify what device type is being programmed, are described in **Section 5.1 "Device ID Word"**. These Device ID bits read out normally, even after code protection.


2.2.1 MEMORY ADDRESS POINTER

Memory in the device address space (000000h to 3FFFFFh) is addressed via the Table Pointer register, which in turn is comprised of three registers:

- · TBLPTRU at RAM address 0FF8h
- · TBLPTRH at RAM address 0FF7h
- · TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the memory within the device.

The EECON1 register is used to control Write or Row Erase operations. The WREN bit must be set to enable writes; this must be done prior to initiating a write sequence. It is strongly recommended that the WREN bit only be set immediately prior to a program or erase operation.

The FREE bit must be set in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit.

3.1 ICSP™ Erase

3.1.1 ICSP BULK ERASE

The PIC18F2XJXX/4XJXX Family devices may be Bulk Erased by writing 0180h to the table address, 3C0005h:3C0004h. The basic sequence is shown in Table 3-1 and demonstrated in Figure 3-1.

Since the code-protect Configuration bit is stored in the program code within code memory, a Bulk Erase operation will also clear any code-protect settings for the device.

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

TABLE 3-1: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	01 01	Write 01h to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	80 80	Write 80h TO 3C0004h to
		erase entire device.
0000	00 00	NOP
0000	00 00	Hold PGD low until erase
		completes.

FIGURE 3-1: BULK ERASE FLOW

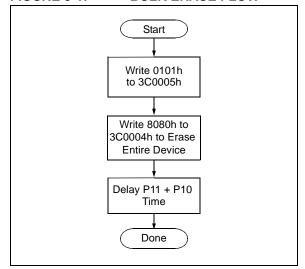
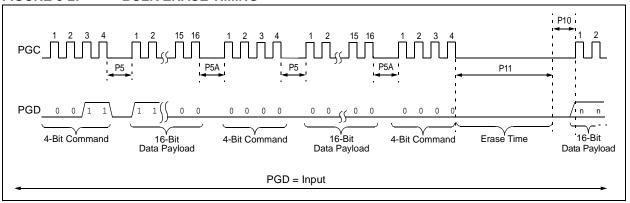



FIGURE 3-2: BULK ERASE TIMING

3.1.2 ICSP™ ROW ERASE

It is possible to erase one row (1024 bytes of data), provided the block is not code-protected or erase/write-protected. Rows are located at static boundaries beginning at program memory address 000000h, extending to the internal program memory limit. Refer to **Section 2.2 "Memory Maps"**).

The Row Erase duration is internally timed. After the WR bit in EECON1 is set, a \mathtt{NOP} instruction is issued, where the 4th PGC is held high for the duration of the Row Erase time, P10.

The code sequence to Row Erase a PIC18F2XJXX/4XJXX Family device is shown in Table 3-2. The flowchart shown in Figure 3-4 depicts the logic necessary to completely erase a PIC18F2XJXX/4XJXX

Family device. The timing diagram that details the Row Erase command and parameter P10 is shown in Figure 3-3.

- **Note 1:** If the last row of program memory is erased, bit 3 of CONFIG1H must also be programmed as '0'.
 - **2:** The TBLPTR register can point at any byte within the row intended for erase.
 - 3: If code protection has been enabled, ICSP Bulk Erase (all program memory erased) operations can be used to disable code protection. ICSP Row Erase operations cannot be used to disable code protection.

TABLE 3-2: ERASE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction				
Step 1: Enable me	emory writes.					
0000	84 A6	BSF EECON1, WREN				
Step 2: Point to fir	st row in code memory.					
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL				
Step 3: Enable er	ase and erase single ro	N.				
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P10.				
Step 4: Repeat St	Step 4: Repeat Step 3, with Address Pointer incremented by 1024, until all rows are erased.					

FIGURE 3-3: SET WR AND START ROW ERASE TIMING

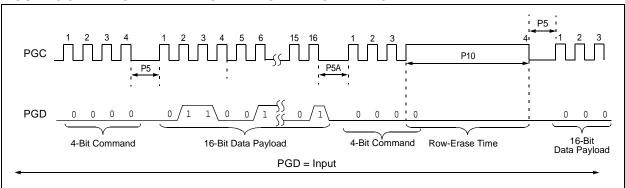
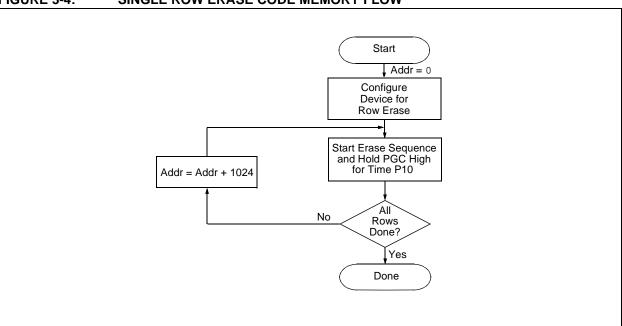



FIGURE 3-4: SINGLE ROW ERASE CODE MEMORY FLOW

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write buffer for all devices in the PIC18F2XJXX/4XJXX Family is 64 bytes. It can be mapped to any 64-byte block beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the 64-byte block of code memory indicated by the Table Pointer.

Write buffer locations are not cleared following a write operation; the buffer retains its data after the write is complete. This means that the buffer must be written with 64 bytes on each operation. If there are locations in the code memory that are to remain empty, the corresponding locations in the buffer must be filled with FFFFh. This avoids rewriting old data from the previous cycle.

The programming duration is internally timed. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

The code sequence to program a PIC18F2XJXX/4XJXX Family device is shown in Table 3-3. The flowchart shown in Figure 3-5 depicts the logic necessary to completely write a PIC18F2XJXX/4XJXX Family device. The timing diagram that details the Start Programming command and parameter P9 is shown in Figure 3-6.

Note 1: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-3: WRITE CODE MEMORY CODE SEQUENCE

IADEL 3-3.	WINITE CODE WI	LMONT CODE SEQUENCE
4-Bit Command	Data Payload	Core Instruction
Step 1: Enable wi	rites.	
0000	84 A6	BSF EECON1, WREN
Step 2: Load write	e buffer.	
0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL as. Any unused locations should be filled with FFFFh.</addr[7:0]></addr[15:8]></addr[21:16]>
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
Step 4: Load write	e buffer for last two bytes	S.
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9.
To continue writin	g data, repeat Steps 2 th	nrough 4, where the Address Pointer is incremented by 2 at each iteration of the loop.

MODIFYING CODE MEMORY 3.2.1

The previous programming example assumed that the device had been Bulk Erased prior to programming. It may be the case, however, that the user wishes to modify only a section of an already programmed device.

As described in Section 4.2 "Verify Code Memory and Configuration Word", the appropriate number of bytes required for the erase buffer must be read out of code memory and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data. The code sequence is shown in Table 3-4.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

3.2.2 **CONFIGURATION WORD PROGRAMMING**

Since the Flash Configuration Words are stored in program memory, they are programmed as if they were program data. Refer to Section 3.2 "Code Memory Programming" and Section 3.2.1 "Modifying Code Memory" for methods and examples on programming or modifying program memory. See also Section 5.0 "Configuration Word" for additional information on the Configuration Words.

TABLE 3-4:	MODIFYING CODE	MEMORY					
4-Bit Command	Data Payload	Core Instruction					
Step 1: Set the Table Pointer for the block to be erased.							
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[8:15]></addr[21:16]>					
Step 2: Read and	modify code memory (see §	Section 4.1 "Read Code Memory").					
Step 3: Enable me	emory writes and set up an e	erase.					
0000	84 A6 88 A6	BSF EECON1, WREN BSF EECON1, FREE					
Step 4: Initiate era	ise.						
0000	82 A6 00 00	BSF EECON1, WR NOP - hold PGC high for time P10.					
Step 5: Load write	buffer. The correct bytes wi	ill be selected based on the Table Pointer.					
Step 7: To continu	e modifying data, repeat Ste	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL Write 2 bytes and post-increment address by 2. Repeat write operation 30 more times to fill the write buffer Write 2 bytes and start programming. NOP - hold PGC high for time P9. frewriting the entire 1024 bytes of the erase page size). eps 1 through 5, where the Address Pointer is incremented by 1024 bytes at each</addr[7:0]></addr[8:15]></addr[21:16]>					
Step 8: Disable wi	•						
0000	94 A6	BCF EECON1, WREN					

3.3 Endurance and Retention

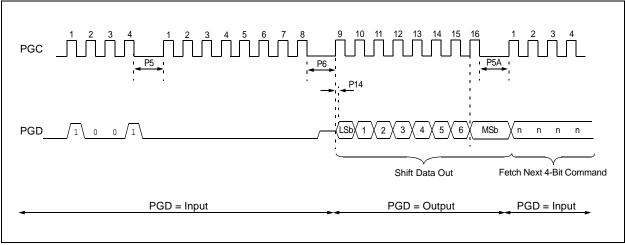
To maintain the endurance specification of the Flash program memory cells, each byte should never be programmed more than once between erase operations. Before attempting to modify the contents of a specific byte of Flash memory a second time, an erase operation (either a Bulk Erase or a Row Erase which includes that byte) should be performed.

4.0 READING THE DEVICE

4.1 Read Code Memory

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

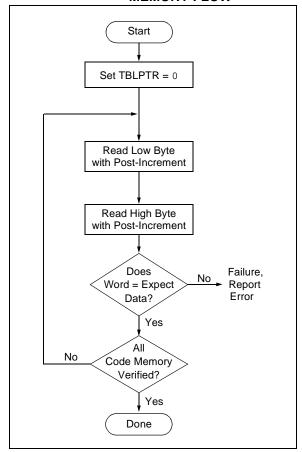
The 4-bit command is shifted in LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A


delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to reading the Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction
Step 1: Set Table	Pointer.	
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>
Step 2: Read mer	mory and then shift out on P	PGD, LSb to MSb.
1001	00 00	TBLRD *+

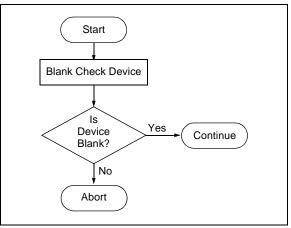

4.2 Verify Code Memory and Configuration Word

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Because the Flash Configuration Words are stored at the end of program memory, it is verified with the rest of the code at this time.

The verify process is shown in the flowchart in Figure 4-2. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to **Section 4.1** "**Read Code Memory**" for implementation details of reading code memory.

Note 1: Because the Flash Configuration Word contains the device code protection bit, code memory should be verified immediately after writing if code protection is enabled. This is because the device will not be readable or verifiable if a device Reset occurs after the Flash Configuration Words (and the CP0 bit) have been cleared.

FIGURE 4-2: VERIFY CODE MEMORY FLOW


4.3 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories, code memory and Configuration bits, must be verified. The Device ID registers (3FFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as a '1', so Blank Checking a device merely means to verify that all bytes read as FFh. The overall process flow is shown in Figure 4-3.

Blank Checking is merely code verification with FFh expect data. For implementation details, refer to Section 4.2 "Verify Code Memory and Configuration Word".

FIGURE 4-3: BLANK CHECK FLOW

5.0 CONFIGURATION WORD

The Configuration Words of the PIC18F2XJXX/4XJXX Family devices are implemented as volatile memory registers. All of the Configuration registers (CONFIG1L, CONFIG1H, CONFIG2L, CONFIG2H, CONFIG3L, CONFIG3H, CONFIG4L, and CONFIG4H) are automatically loaded following each device Reset.

The data for these registers is taken from the four Flash Configuration Words located at the end of program memory. Configuration data is stored in order, starting with CONFIG1L in the lowest Flash address and ending with CONFIG4H in the highest. The mapping to specific Configuration Words is shown in Table 5-1. Users should always reserve these locations for Configuration Word data and write their application code accordingly.

The upper four bits of each Flash Configuration Word should always be stored in program memory as '1111'. This is done so these program memory addresses will always be '1111 $_{\mbox{\scriptsize XXXX}}$ $_{\mbox{\scriptsize XXXX}}$ ' and interpreted as a NOP instruction if they were ever to be executed. Because the corresponding bits in the Configuration registers are unimplemented, they will not change the device's configuration.

The Configuration and Device ID registers are summarized in Table 5-2. A listing of the individual Configuration bits and their options is provided in Table 5-3.

TABLE 5-1: MAPPING OF THE FLASH
CONFIGURATION WORDS TO
THE CONFIGURATION
REGISTERS

Configuration Register	Flash Configuration Byte ⁽¹⁾	Configuration Register Address					
CONFIG1L	XFF8h	300000h					
CONFIG1H	XFF9h	300001h					
CONFIG2L	XFFAh	300002h					
CONFIG2H	XFFBh	300003h					
CONFIG3L	XFFCh	300004h					
CONFIG3H	XFFDh	300005h					
CONFIG4L ⁽²⁾	XFFEh	300006h					
CONFIG4H ⁽²⁾	XFFFh	300007h					

- Note 1: See Table 2-2 for the complete addresses within code space for specific devices and memory sizes.
 - 2: Unimplemented in PIC18F45J10 family devices.

TABLE 5-2: PIC18F45J10 FAMILY DEVICES: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	_	_	_	WDTEN	1111
300001h	CONFIG1H	(1)	(1)	(1)	(1)	(2)	CP0	_	_	01
300002h	CONFIG2L	IESO	FCMEN	_	_	_	FOSC2	FOSC1	FOSC0	11111
300003h	CONFIG2H	(1)	(1)	(1)	(1)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300005h	CONFIG3H	(1)	(1)	(1)	(1)	_	_	_	CCP2MX	1
3FFFFEh	DEVID1 ⁽³⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table
3FFFFFh	DEVID2 ⁽³⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table

Legend: - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

- 2: This bit should always be maintained at '0'.
- 3: DEVID registers are read-only and cannot be programmed by the user.

TABLE 5-4: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	PLLDIV2 ⁽³⁾	PLLDIV1 ⁽³⁾	PLLDIV0(3)	WDTEN	111- 1111
300001h	CONFIG1H	(2)	(2)	(2)	(2)	(4)	CP0	CPDIV1 ⁽³⁾	CPDIV0(3)	0111
300002h	CONFIG2L	IESO	FCMEN	_	LPT1OSC	T1DIG	FOSC2	FOSC1	FOSC0	11-1 1111
300003h	CONFIG2H	(2)	(2)	(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300004h	CONFIG3L	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	1111 1111
300005h	CONFIG3H	(2)	(2)	(2)	(2)	MSSPMSK	_	1	IOL1WAY	11
300006h	CONFIG4L	WPCFG	WPEND	WPFP5 ⁽⁵⁾	WPFP4 ⁽⁶⁾	WPFP3	WPFP2	WPFP1	WPFP0	1111 1111
300007h	CONFIG4H	(2)	(2)	(2)	(2)	_	_	_	WPDIS	1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0100 00xx

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

- 2: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- 4: This bit should always be maintained at '0'.
- 5: This bit is not available on 32K and 16K memory devices (X4J11, X4J50, X5J11, and X5J50 devices) and should always be maintained at '0' on those devices.
- 6: This bit is not available on 16K memory devices (X4J11 and X4J50 devices) and should always be maintained at '0' on those devices.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
DEBUG	CONFIG1L	Background Debugger Enable bit 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to in-circuit debug
XINST	CONFIG1L	Enhanced Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
STVREN	CONFIG1L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow enabled 0 = Reset on stack overflow/underflow disabled
PLLDIV<2:0>(3)	CONFIG1L	PLL Input Divider bits Divider must be selected to provide a 4 MHz input into the 96 MHz PLL. 111 = No divide – oscillator used directly (4 MHz input) 110 = Oscillator divided by 2 (8 MHz input) 101 = Oscillator divided by 3 (12 MHz input) 100 = Oscillator divided by 4 (16 MHz input) 011 = Oscillator divided by 5 (20 MHz input) 010 = Oscillator divided by 6 (24 MHz input) 001 = Oscillator divided by 10 (40 MHz input) 000 = Oscillator divided by 12 (48 MHz input)
WDTEN	CONFIG1L	Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit)

Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.

- 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-7: PIC18F47J13 AND PIC18F47J53 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
FOSC<2:0>	CONFIG2L ^(1,2)	Oscillator Selection bits 111 =EC+PLL (S/W controlled by PLLEN bit), CLKO on RA6 110 =EC oscillator (PLL always disabled) with CLKO on RA6 110 =HS+PLL (S/W controlled by PLLEN bit) 100 =HS oscillator (PLL always disabled) 011 =INTOSCPLLO, internal oscillator with PLL (S/W controlled by PLLEN bit), CLKO on RA6, port function on RA7 010 =INTOSCPLL, internal oscillator with PLL (S/W controlled by PLLEN bit), port function on RA6 and RA7 001 =INTOSCO, internal oscillator, INTOSC or INTRC (PLL always disabled), CLKO on RA6, port function on RA7 000 =INTOSC, internal oscillator INTOSC or INTRC (PLL always disabled), port function on RA6 and RA7
WDTPS<3:0>	CONFIG2H ^(1,2)	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1
DSWTPS<3:0>	CONFIG3L	Deep Sleep Watchdog Timer Postscale Select bits The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms. 1111 = 1:2,147,483,648 (25.7 days) 1110 = 1:536,870,912 (6.4 days) 1101 = 1:134,217,728 (38.5 hours) 1100 = 1:33,554,432 (9.6 hours) 1011 = 1:8,388,608 (2.4 hours) 1010 = 1:2,097,152 (36 minutes) 1001 = 1:524,288 (9 minutes) 1000 = 1:131,072 (135 seconds) 0111 = 1:32,768 (34 seconds) 0110 = 1:8,192 (8.5 seconds) 0110 = 1:2,048 (2.1 seconds) 0100 = 1:512 (528 ms) 0011 = 1:128 (132 ms) 0010 = 1:32 (33 ms) 0001 = 1:8 (8.3 ms) 0000 = 1:2 (2.1 ms)
DSWDTEN	CONFIG3L	Deep Sleep Watchdog Timer Enable bit 1 = DSWDT enabled 0 = DSWDT disabled
DSBOREN	CONFIG3L	Deep Sleep BOR Enable bit 1 = BOR enabled in Deep Sleep 0 = BOR disabled in Deep Sleep (does not affect operation in non Deep Sleep modes)

- Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.
 - 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
 - **3:** These bits are not implemented in PIC18F47J13 family devices.
 - **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.
 - 5: Not implemented on PIC18F47J53 family devices.

TABLE 5-7: PIC18F47J13 AND PIC18F47J53 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
RTCOSC	CONFIG3L	RTCC Reference Clock Select bit 1 = RTCC uses T10SC/T1CKI as reference clock 0 = RTCC uses INTRC as reference clock
DSWDTOSC	CONFIG3L	DSWDT Reference Clock Select bit 1 = DSWDT uses INTRC as reference clock 0 = DSWDT uses T1OSC/T1CKI as reference clock
MSSPMSK ^(1,2)	CONFIG3H	MSSP 7-Bit Address Masking Mode Enable bit 1 = 7-Bit Address Masking mode enable 0 = 5-Bit Address Masking mode enable
PLLSEL ⁽⁵⁾	CONFIG3H	PLL Selection bit 1 = 4x PLL selected 0 = 96 MHz PLL selected
ADCSEL	CONFIG3H	ADC Mode Selection bit 1 = 10-Bit ADC mode selected 0 = 12-Bit ADC mode selected
IOL1WAY	CONFIG3H	IOLOCK Bit One-Way Set Enable bit 1 = The IOLOCK bit (PPSCON<0>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit (PPSCON<0>) can be set and cleared as needed, provided the unlock sequence has been completed
WPCFG	CONFIG4L	Write/Erase Protect Configuration Words Page bit (valid when WPDIS = 0) 1 = Configuration Words page is not erase/write-protected unless WPEND and WPFP<6:0> settings include the Configuration Words page 0 = Configuration Words page is erase/write-protected, regardless of WPEND and WPFP<6:0>
WPFP<6:0>	CONFIG4L	Write/Erase Protect Page Start/End Location bits Used with WPEND bit to define which pages in Flash will be write/erase-protected.
WPEND	CONFIG4H	Write/Erase Protect Region Select bit (valid when WPDIS = 0) 1 = Flash pages, WPFP<6:0> to Configuration Words page, are write/erase-protected 0 = Flash pages, 0 to WPFP<6:0> are write/erase-protected
WPDIS	CONFIG4H	Write Protect Disable bit 1 = WPFP<6:0>, WPEND and WPCFG bits ignored; all Flash memory may be erased or written 0 = WPFP<6:0>, WPEND and WPCFG bits enabled; write/erase-protect active for the selected region(s)
LS48MHZ ⁽³⁾	CONFIG4H	System Clock Selection bit 1 = System clock is expected at 48 MHz, FS/LS USB CLKEN's divide-by is set to 8 0 = System clock is expected at 24 MHz, FS/LS USB CLKEN's divide-by is set to 4
DEV<2:0>	DEVID1	Device ID bits Used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.
REV<4:0>	DEVID1	Revision ID bits Indicate the device revision.
DEV<10:3>	DEVID2	Device ID bits Used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.

- 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
- **3:** These bits are not implemented in PIC18F47J13 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.
- **5:** Not implemented on PIC18F47J53 family devices.

Table 5-9 describes how to calculate the checksum for each device.

TABLE 5-9: CHECKSUM COMPUTATION

IABLE 5-9:	CHECKSUM COMPUTATION				
Device	Code Protection	Checksum			
PIC18F24J10 PIC18F44J10	Off	SUM[000000:003FF7] + ([003FF8] & E1h) + ([003FF9] & 04h) + ([003FFA] & C7h) + ([003FFB] & 0Fh) + ([003FFD] & 01h)			
	On	0000h			
PIC18F24J11 PIC18F44J11	Off	SUM[000000:003FF7] + ([003FF8] & E1h) + ([003FF9] & FCh) + ([003FFA] & DFh) + ([003FFB] & FFh) + ([003FFC] & FFh) + ([003FFD] & F9h) + ([003FFE] & FFh) + ([003FFF] & F1h)			
	On	0000h			
PIC18F24J50 PIC18F44J50	Off	SUM[000000:003FF7] + ([003FF8] & EFh) + ([003FF9] & FFh) + ([003FFA] & DFh) + ([003FFB] & FFh) + ([003FFC] & FFh) + ([003FFF] & F9h) + ([003FFE] & FFh) + ([003FFF] & F1h)			
	On	0000h			
PIC18F25J10 PIC18F45J10	Off	SUM[000000:007FF7] + ([007FF8] & E1h) + ([007FF9] & 04h) + ([007FFA] & C7h) + ([007FFB] & 0Fh) + ([007FFD] & 01h)			
1 10 101 100 10	On	0000h			
PIC18F25J11 PIC18F45J11	Off	SUM[000000:007FF7] + ([007FF8] & E1h) + ([007FF9] & FCh) + ([007FFA] & DFh) + ([007FFB] & FFh) + ([007FFC] & FFh) + ([007FFE] & F9h) + ([007FFE] & F1h)			
	On	0000h			
PIC18F25J50 PIC18F45J50	Off	SUM[000000:007FF7] + ([007FF8] & EFh) + ([007FF9] & FFh) + ([007FFA] & DFh) + ([007FFB] & FFh) + ([007FFC] & FFh) + ([007FFE] & FFh) + ([007FFF] & F1h)			
	On	0000h			
PIC18F26J11 PIC18F46J11	Off	SUM[000000:00FFF7] + ([00FFF8] & E1h) + ([00FFF9] & FCh) + ([00FFFA] & DFh) + ([00FFFB] & FFh) + ([00FFFD] & F9h) + ([00FFFE] & FFh) + ([00FFFF] & F1h)			
	On	0000h			
PIC18F26J50 PIC18F46J50	Off	SUM[000000:00FFF7] + ([00FFF8] & EFh) + ([00FFF9] & FFh) + ([00FFFA] & DFh) + ([00FFFB] & FFh) + ([00FFFD] & F9h) + ([00FFFE] & FFh) + ([00FFFF] & F1h)			
	On	0000h			
PIC18F26J13 PIC18F46J13	Off	SUM[000000:00FFF7] + ([00FFF8] & FFh) + ([00FFF9] & FCh) +([00FFFA] & FFh) + ([00FFFB] & FFh) + ([00FFFE] & BFh) + ([00FFFF] & F3h)			
	On	0000h			
PIC18F26J53 PIC18F46J53	Off	SUM[000000:00FFF7] + ([00FFF8] & FFh) + ([00FFF9] & FFh) +([00FFFA] & FFh) + ([00FFFB] & FFh) + ([00FFFE] & BFh) + ([00FFFF] & FBh)			
	On	0000h			
PIC18F27J13 PIC18F47J13	Off	SUM[000000:01FFF7] + ([01FFF8] & FFh) + ([01FFF9] & FCh) + ([01FFFA] & FFh) + ([01FFFB] & FFh) + ([01FFFE] & FFh) + ([01FFFF] & F3h)			
	On	0000h			
PIC18F27J53 PIC18F47J53	Off	SUM[000000:01FFF7] + ([01FFF8] & FFh) + ([01FFF9] & FFh) + ([01FFFA] & FFh) + ([01FFFB] & FFh) + ([01FFFE] & FFh) + ([01FFFF] & FBh)			
	On	0000h			

Legend: [a] = Value at address a; SUM[a:b] = Sum of locations a to b inclusive; + = Addition; & = Bitwise AND. All addresses are hexadecimal.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

- 1								
Param No.	Symbol	Characterist	Min.	Max.	Units	Conditions		
	VDDCORE	External Supply Voltage for N Core During Programming O (PIC18LF devices)	2.25	2.75	V	(Note 1)		
D111 VDD	VDD	Supply Voltage During Programming	PIC18 LF XXJXX	VDDCORE	3.60	V	Normal programming (Note 2)	
			PIC18FXXJ10	2.70	3.60	V		
			PIC18FXXJ50 PIC18FXXJ11 PIC18FXXJ53 PIC18FXXJ13	2.35	3.60	V		
D112	IPP	Programming Current on MC		5	μΑ			
D113	IDDP	Supply Current During Progr		10	mA			
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V			
D041	VIH	Input High Voltage	0.8 VDD	Vdd	V			
D080	Vol	Output Low Voltage		0.4	V	IOL = 3.4 mA @ 3.3V		
D090	Vон	Output High Voltage	2.4	_	V	IOH = -2.0 mA @ 3.3V		
D012	Сю	Capacitive Loading on I/O pir		50	рF	To meet AC specifications		
CF	CF	Filter Capacitor Value on VCAP	PIC18 LF XXJXX	0.1	_	μF	(Note 1)	
			PIC18FXXJ10	4.7	18	μF		
		PIC18FXXJ13 PIC18FXXJ11 PIC18FXXJ5X	5.4	18	μF			

- Note 1: External power must be supplied to the VDDCORE/VCAP pin if the on-chip voltage regulator is disabled. See Section 2.1.1 "PIC18F2XJXX/4XJXX/ LF2XJXX/LF4XJXX Devices and the On-Chip Voltage Regulator" for more information.
 - 2: VDD must also be supplied to the AVDD pins during programming. AVDD and AVss should always be within ±0.3V of VDD and Vss, respectively.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	Operating Temperature: 25°C is recommended						
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
P1	TR	MCLR Rise Time to Enter Program/Verify mode	_	1.0	μS		
P2	TPGC	Serial Clock (PGC) Period	100	_	ns		
P2A	TPGCL	Serial Clock (PGC) Low Time	50	_	ns		
P2B	TPGCH	Serial Clock (PGC) High Time	50	_	ns		
P3	TSET1	Input Data Setup Time to Serial Clock ↓	20	_	ns		
P4	THLD1	Input Data Hold Time from PGC ↓	20	_	ns		
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	50	_	ns		
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	50	_	ns		
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns		
P9	TDLY5	Delay to allow Block Programming to occur	3.4	_	ms	PIC18F2XJ10/PIC18F4XJ10	
			1.2	_	ms	PIC18F2XJ11/PIC18F4XJ11/ PIC18F2XJ13/PIC18F4XJ13/ PIC18F2XJ5X/PIC18F4XJ5X	
P10	TDLY6	Delay to allow Row Erase to occur	49	_	ms	PIC18F2XJ10/PIC18F4XJ10/ PIC18F2XJ13/PIC18F4XJ13/ PIC18F2XJ53/PIC18F4XJ53	
			54	_	ms	PIC18F2XJ11/PIC18F4XJ11/ PIC18F2XJ50/PIC18F4XJ50	
P11	TDLY7	Delay to allow Bulk Erase to occur	475	_	ms	PIC18F2XJ10/PIC18F4XJ10/ PIC18F2XJ13/PIC18F4XJ13/ PIC18F2XJ53/PIC18F4XJ53	
			524	_	ms	PIC18F2XJ11/PIC18F4XJ11/ PIC18F2XJ50/PIC18F4XJ50	
P12	THLD2	Input Data Hold Time from MCLR ↑	400	_	μS		
P13	TSET2	VDD ↑ Setup Time to MCLR ↑	100	_	ns		
P14	TVALID	Data Out Valid from PGC ↑	25	_	ns		
P16	TDLY8	Delay between Last PGC ↓ and MCLR ↓	20	_	ns		
P17	THLD3	MCLR ↓ to VDD ↓	3	_	μS		
P19	TKEY1	Delay from First MCLR ↓ to First PGC ↑ for Key Sequence on PGD	4	_	ms		
P20	TKEY2	Delay from Last <u>PGC</u> ↓ for Key Sequence on PGD to Second MCLR ↑	50	_	ns		

Note 1: External power must be supplied to the VDDCORE/VCAP pin if the on-chip voltage regulator is disabled. See Section 2.1.1 "PIC18F2XJXX/4XJXX/ LF2XJXX/LF4XJXX Devices and the On-Chip Voltage Regulator" for more information.

^{2:} VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and VSS, respectively.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-874-1

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.