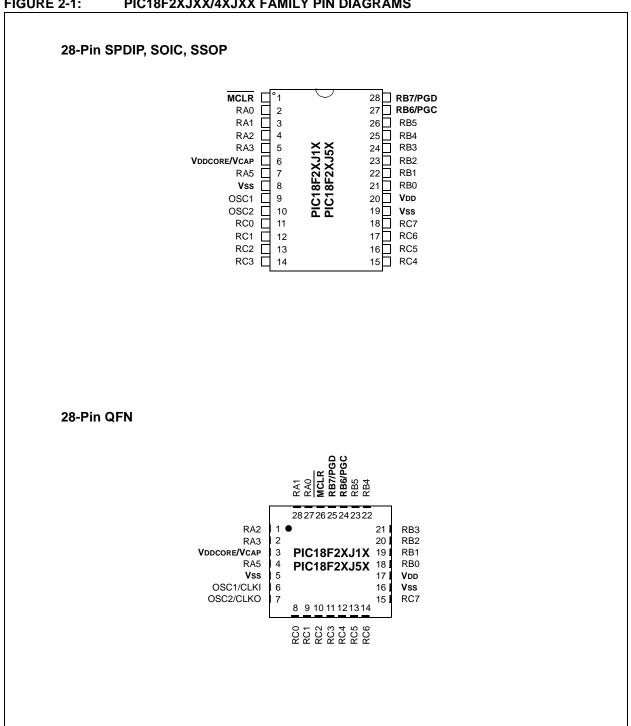
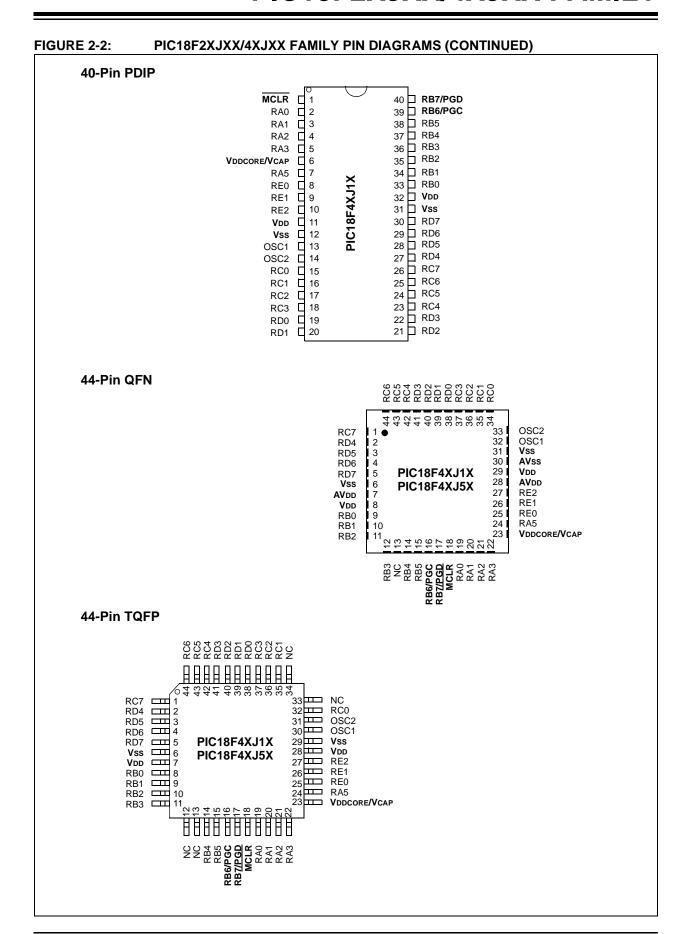


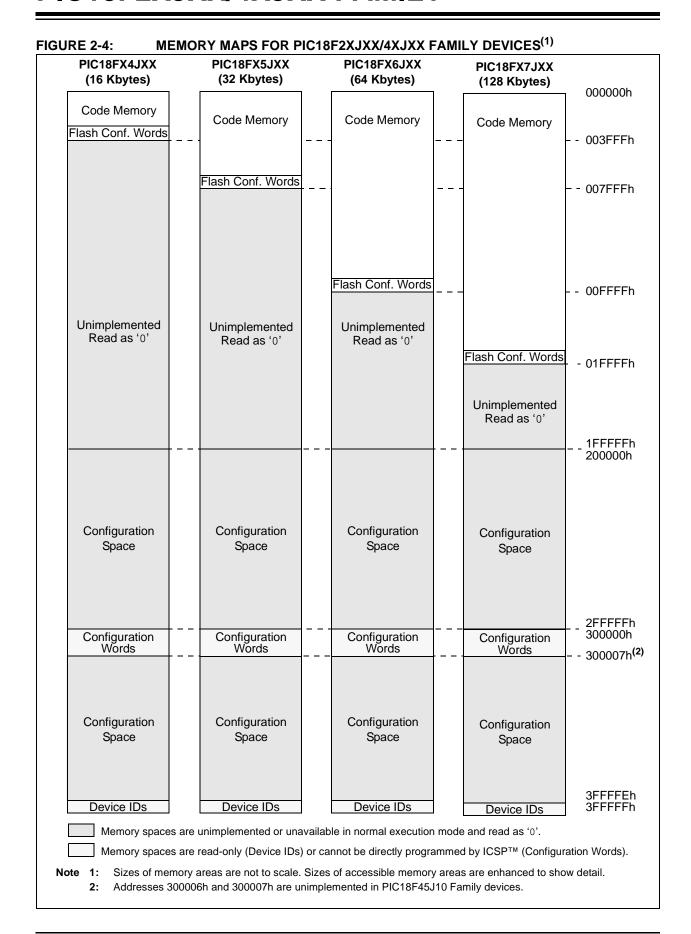
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

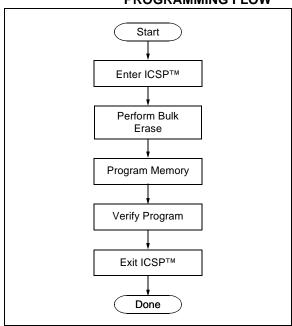

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	16
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j50t-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: PIC18F2XJXX/4XJXX FAMILY PIN DIAGRAMS



2.3 Overview of the Programming Process

Figure 2-5 shows the high-level overview of the programming process in which a Bulk Erase is performed first, then the code memory is programmed. Since only nonvolatile Configuration Words are within the code memory space, the Configuration Words are also programmed as code. Code memory (including the Configuration Words) is then verified to ensure that programming was successful.

FIGURE 2-5: HIGH-LEVEL PROGRAMMING FLOW

2.4 Entering and Exiting ICSP™ Program/Verify Mode

Entry into ICSP modes for PIC18F2XJXX/4XJXX Family devices is somewhat different than previous PIC18 devices. As shown in Figure 2-6, entering ICSP Program/Verify mode requires three steps:

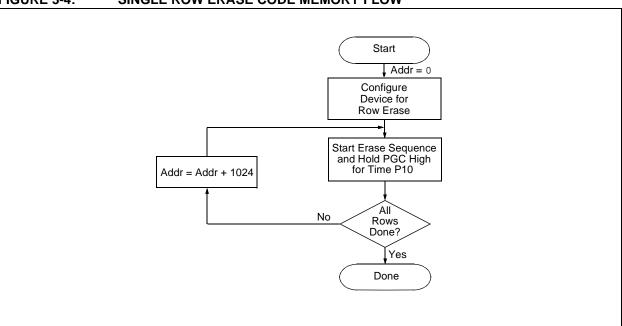
- Voltage is briefly applied to the MCLR pin.
- 2. A 32-bit key sequence is presented on PGD.
- 3. Voltage is reapplied to MCLR and held.

The programming voltage applied to $\overline{\text{MCLR}}$ is VIH, or essentially, VDD. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P19 must elapse before presenting the key sequence on PGD.

The key sequence is a specific 32-bit pattern, '0100 1101 0100 0011 0100 1000 0101 0000', which is more easily remembered as 4D434850h in hexadecimal. The device will enter Program/Verify mode only if the sequence is valid. The Most Significant bit of the Most Significant nibble must be shifted in first.

Once the key sequence is complete, VIH must be applied to MCLR and held at that level for as long as Program/Verify mode is to be maintained. An interval of at least time, P20 and P12, must elapse before presenting data on PGD. Signals appearing on PGD before P12 has elapsed may not be interpreted as valid.

On successful entry, the program memory can be accessed and programmed in serial fashion. While in the Program/Verify mode, all unused I/Os are placed in the high-impedance state.


Exiting Program/Verify mode is done by removing VIH from MCLR, as shown in Figure 2-7. The only requirement for exit is that an interval, P16, should elapse between the last clock and program signals on PGC and PGD before removing VIH.

When VIH is reapplied to $\overline{\text{MCLR}}$, the device will enter the ordinary operational mode and begin executing the application instructions.

FIGURE 2-6: ENTERING PROGRAM/VERIFY MODE

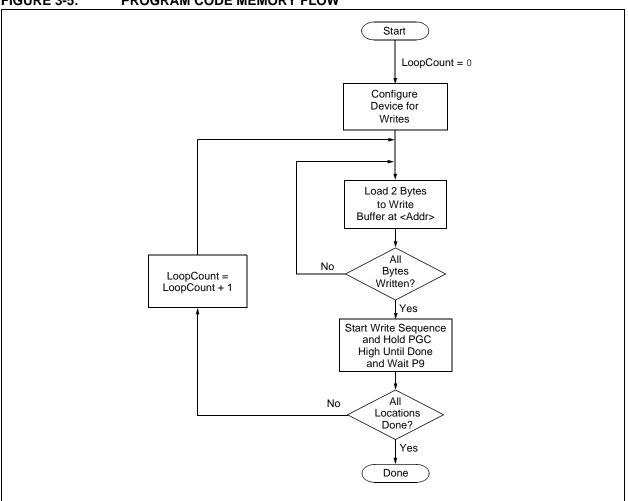
FIGURE 3-4: SINGLE ROW ERASE CODE MEMORY FLOW

3.2 Code Memory Programming

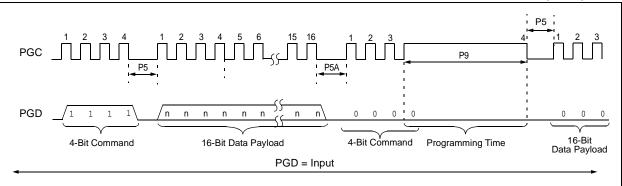
Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write buffer for all devices in the PIC18F2XJXX/4XJXX Family is 64 bytes. It can be mapped to any 64-byte block beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the 64-byte block of code memory indicated by the Table Pointer.

Write buffer locations are not cleared following a write operation; the buffer retains its data after the write is complete. This means that the buffer must be written with 64 bytes on each operation. If there are locations in the code memory that are to remain empty, the corresponding locations in the buffer must be filled with FFFFh. This avoids rewriting old data from the previous cycle.

The programming duration is internally timed. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.


The code sequence to program a PIC18F2XJXX/4XJXX Family device is shown in Table 3-3. The flowchart shown in Figure 3-5 depicts the logic necessary to completely write a PIC18F2XJXX/4XJXX Family device. The timing diagram that details the Start Programming command and parameter P9 is shown in Figure 3-6.

Note 1: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.


TABLE 3-3: WRITE CODE MEMORY CODE SEQUENCE

IADEL 3-3.	WINITE CODE WI	LMONT CODE SEQUENCE
4-Bit Command	Data Payload	Core Instruction
Step 1: Enable wi	rites.	
0000	84 A6	BSF EECON1, WREN
Step 2: Load write	e buffer.	
0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL as. Any unused locations should be filled with FFFFh.</addr[7:0]></addr[15:8]></addr[21:16]>
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
Step 4: Load write	e buffer for last two bytes	S.
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9.
To continue writin	g data, repeat Steps 2 th	nrough 4, where the Address Pointer is incremented by 2 at each iteration of the loop.

FIGURE 3-5: PROGRAM CODE MEMORY FLOW

FIGURE 3-6: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

3.3 Endurance and Retention

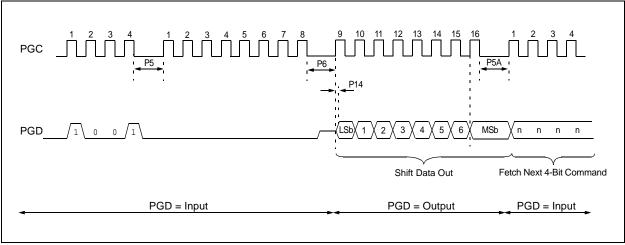
To maintain the endurance specification of the Flash program memory cells, each byte should never be programmed more than once between erase operations. Before attempting to modify the contents of a specific byte of Flash memory a second time, an erase operation (either a Bulk Erase or a Row Erase which includes that byte) should be performed.

4.0 READING THE DEVICE

4.1 Read Code Memory

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

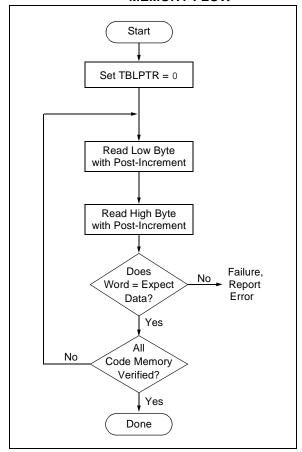
The 4-bit command is shifted in LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A


delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to reading the Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction						
Step 1: Set Table	Pointer.							
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>						
Step 2: Read mer	Step 2: Read memory and then shift out on PGD, LSb to MSb.							
1001	00 00	TBLRD *+						

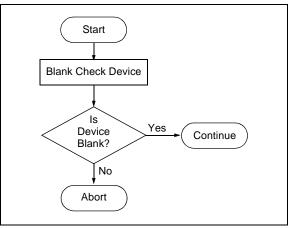

4.2 Verify Code Memory and Configuration Word

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Because the Flash Configuration Words are stored at the end of program memory, it is verified with the rest of the code at this time.

The verify process is shown in the flowchart in Figure 4-2. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to **Section 4.1** "**Read Code Memory**" for implementation details of reading code memory.

Note 1: Because the Flash Configuration Word contains the device code protection bit, code memory should be verified immediately after writing if code protection is enabled. This is because the device will not be readable or verifiable if a device Reset occurs after the Flash Configuration Words (and the CP0 bit) have been cleared.

FIGURE 4-2: VERIFY CODE MEMORY FLOW


4.3 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories, code memory and Configuration bits, must be verified. The Device ID registers (3FFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as a '1', so Blank Checking a device merely means to verify that all bytes read as FFh. The overall process flow is shown in Figure 4-3.

Blank Checking is merely code verification with FFh expect data. For implementation details, refer to Section 4.2 "Verify Code Memory and Configuration Word".

FIGURE 4-3: BLANK CHECK FLOW

5.0 CONFIGURATION WORD

The Configuration Words of the PIC18F2XJXX/4XJXX Family devices are implemented as volatile memory registers. All of the Configuration registers (CONFIG1L, CONFIG1H, CONFIG2L, CONFIG2H, CONFIG3L, CONFIG3H, CONFIG4L, and CONFIG4H) are automatically loaded following each device Reset.

The data for these registers is taken from the four Flash Configuration Words located at the end of program memory. Configuration data is stored in order, starting with CONFIG1L in the lowest Flash address and ending with CONFIG4H in the highest. The mapping to specific Configuration Words is shown in Table 5-1. Users should always reserve these locations for Configuration Word data and write their application code accordingly.

The upper four bits of each Flash Configuration Word should always be stored in program memory as '1111'. This is done so these program memory addresses will always be '1111 $_{\mbox{\scriptsize XXXX}}$ $_{\mbox{\scriptsize XXXX}}$ ' and interpreted as a NOP instruction if they were ever to be executed. Because the corresponding bits in the Configuration registers are unimplemented, they will not change the device's configuration.

The Configuration and Device ID registers are summarized in Table 5-2. A listing of the individual Configuration bits and their options is provided in Table 5-3.

TABLE 5-1: MAPPING OF THE FLASH
CONFIGURATION WORDS TO
THE CONFIGURATION
REGISTERS

Configuration Register	Flash Configuration Byte ⁽¹⁾	Configuration Register Address						
CONFIG1L	XFF8h	300000h						
CONFIG1H	XFF9h	300001h						
CONFIG2L	XFFAh	300002h						
CONFIG2H	XFFBh	300003h						
CONFIG3L	XFFCh	300004h						
CONFIG3H	XFFDh	300005h						
CONFIG4L ⁽²⁾	XFFEh	300006h						
CONFIG4H ⁽²⁾	XFFFh	300007h						

- Note 1: See Table 2-2 for the complete addresses within code space for specific devices and memory sizes.
 - 2: Unimplemented in PIC18F45J10 family devices.

TABLE 5-2: PIC18F45J10 FAMILY DEVICES: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	_	_	_	WDTEN	1111
300001h	CONFIG1H	(1)	(1)	(1)	(1)	(2)	CP0	_	_	01
300002h	CONFIG2L	IESO	FCMEN	_	_	_	FOSC2	FOSC1	FOSC0	11111
300003h	CONFIG2H	(1)	(1)	(1)	(1)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300005h	CONFIG3H	(1)	(1)	(1)	(1)	_	_	_	CCP2MX	1
3FFFFEh	DEVID1 ⁽³⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table
3FFFFFh	DEVID2 ⁽³⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table

Legend: - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

- 2: This bit should always be maintained at '0'.
- 3: DEVID registers are read-only and cannot be programmed by the user.

TABLE 5-3: PIC18F45J10 FAMILY DEVICES: BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
DEBUG	CONFIG1L	Background Debugger Enable bit 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to in-circuit debug
XINST	CONFIG1L	Extended Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
STVREN	CONFIG1L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow enabled 0 = Reset on stack overflow/underflow disabled
WDTEN	CONFIG1L	Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit)
CP0	CONFIG1H	Code Protection bit 1 = Program memory is not code-protected 0 = Program memory is code-protected
IESO	CONFIG2L	Internal/External Oscillator Switchover bit 1 = Oscillator Switchover mode enabled 0 = Oscillator Switchover mode disabled
FCMEN	CONFIG2L	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled
FOSC2	CONFIG2L	Default Oscillator Select bit 1 = Clock designated by FOSC<1:0> is enabled as system clock when OSCCON<1:0> = 00 0 = INTRC is enabled as system clock when OSCCON<1:0> = 00
FOSC<1:0>	CONFIG2L	Primary Oscillator Select bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 10 = EC oscillator, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control 00 = HS oscillator
WDTPS<3:0>	CONFIG2H	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1
CCP2MX	CONFIG3H	CCP2 MUX bit 1 = CCP2 is multiplexed with RC1 0 = CCP2 is multiplexed with RB3

TABLE 5-4: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	PLLDIV2 ⁽³⁾	PLLDIV1 ⁽³⁾	PLLDIV0(3)	WDTEN	111- 1111
300001h	CONFIG1H	(2)	(2)	(2)	(2)	(4)	CP0	CPDIV1 ⁽³⁾	CPDIV0(3)	0111
300002h	CONFIG2L	IESO	FCMEN	_	LPT1OSC	T1DIG	FOSC2	FOSC1	FOSC0	11-1 1111
300003h	CONFIG2H	(2)	(2)	(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300004h	CONFIG3L	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	1111 1111
300005h	CONFIG3H	(2)	(2)	(2)	(2)	MSSPMSK	_	1	IOL1WAY	11
300006h	CONFIG4L	WPCFG	WPEND	WPFP5 ⁽⁵⁾	WPFP4 ⁽⁶⁾	WPFP3	WPFP2	WPFP1	WPFP0	1111 1111
300007h	CONFIG4H	(2)	(2)	(2)	(2)	_	_	_	WPDIS	1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0100 00xx

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

- 2: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- 4: This bit should always be maintained at '0'.
- 5: This bit is not available on 32K and 16K memory devices (X4J11, X4J50, X5J11, and X5J50 devices) and should always be maintained at '0' on those devices.
- 6: This bit is not available on 16K memory devices (X4J11 and X4J50 devices) and should always be maintained at '0' on those devices.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
DEBUG	CONFIG1L	Background Debugger Enable bit 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to in-circuit debug
XINST	CONFIG1L	Enhanced Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
STVREN	CONFIG1L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow enabled 0 = Reset on stack overflow/underflow disabled
PLLDIV<2:0>(3)	CONFIG1L	PLL Input Divider bits Divider must be selected to provide a 4 MHz input into the 96 MHz PLL. 111 = No divide – oscillator used directly (4 MHz input) 110 = Oscillator divided by 2 (8 MHz input) 101 = Oscillator divided by 3 (12 MHz input) 100 = Oscillator divided by 4 (16 MHz input) 011 = Oscillator divided by 5 (20 MHz input) 010 = Oscillator divided by 6 (24 MHz input) 001 = Oscillator divided by 10 (40 MHz input) 000 = Oscillator divided by 12 (48 MHz input)
WDTEN	CONFIG1L	Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit)

Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.

- 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
CP0 ⁽⁴⁾	CONFIG1H	Code Protection bit 1 = Program memory is not code-protected 0 = Program memory is code-protected
CPDIV<1:0> ⁽³⁾	CONFIG1H	CPU System Clock Selection bits 11 = No CPU system clock divide 10 = CPU system clock divided by 2 01 = CPU system clock divided by 3 00 = CPU system clock divided by 6
IESO	CONFIG2L ^(1,2)	Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Oscillator Switchover mode enabled 0 = Oscillator Switchover mode disabled
FCMEN	CONFIG2L ^(1,2)	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled
LPT1OSC	CONFIG2L ^(1,2)	Low-Power Timer1 Oscillator Enable bit 1 = Timer1 oscillator configured for low-power operation 0 = Timer1 oscillator configured for higher-power operation
T1DIG	CONFIG2L ^(1,2)	Secondary Clock Source T1OSCEN Enforcement bit ⁽¹⁾ 1 = Secondary oscillator clock source may be selected (OSCCON <1:0> = 01) regardless of T1OSCEN state 0 = Secondary oscillator clock source may not be selected unless T1CON <3> = 1
FOSC<2:0>	CONFIG2L ^(1,2)	Oscillator Selection bits 111 =EC+PLL (S/W controlled by PLLEN bit), CLKO on RA6 110 =EC oscillator (PLL always disabled) with CLKO on RA6 101 =HS+PLL (S/W controlled by PLLEN bit) 100 =HS oscillator (PLL always disabled) 011 =INTOSCPLLO, internal oscillator with PLL (S/W controlled by PLLEN bit), CLKO on RA6, port function on RA7 010 =INTOSCPLL, internal oscillator with PLL (S/W controlled by PLLEN bit), port function on RA6 and RA7 001 =INTOSCO, internal oscillator, INTOSC or INTRC (PLL always disabled), CLKO on RA6, port function on RA7 000 =INTOSC, internal oscillator INTOSC or INTRC (PLL always disabled), port function on RA6 and RA7
WDTPS<3:0>	CONFIG2H ^(1,2)	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.

- 2: The Configuration bits are reset to '1' only on VDD Reset, it is reloaded with the programmed value at any device Reset.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
DSWTPS<3:0>	CONFIG3L	Deep Sleep Watchdog Timer Postscale Select bits The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms. 1111 = 1:2,147,483,648 (25.7 days) 1110 = 1:536,870,912 (6.4 days) 1101 = 1:134,217,728 (38.5 hours) 1100 = 1:33,554,432 (9.6 hours) 1011 = 1:8,388,608 (2.4 hours) 1010 = 1:2,097,152 (36 minutes) 1001 = 1:524,288 (9 minutes) 1000 = 1:131,072 (135 seconds) 0111 = 1:32,768 (34 seconds) 0110 = 1:8,192 (8.5 seconds) 0100 = 1:512 (528 ms) 0011 = 1:128 (132 ms) 0010 = 1:32 (33 ms) 0001 = 1:8 (8.3 ms) 0000 = 1:2 (2.1 ms)
DSWDTEN	CONFIG3L	Deep Sleep Watchdog Timer Enable bit 1 = DSWDT enabled 0 = DSWDT disabled
DSBOREN	CONFIG3L	Deep Sleep BOR Enable bit 1 = BOR enabled in Deep Sleep 0 = BOR disabled in Deep Sleep (does not affect operation in non Deep Sleep modes)
RTCOSC	CONFIG3L	RTCC Reference Clock Select bit 1 = RTCC uses T1OSC/T1CKI as reference clock 0 = RTCC uses INTRC as reference clock
DSWDTOSC	CONFIG3L	DSWDT Reference Clock Select bit 1 = DSWDT uses INTRC as reference clock 0 = DSWDT uses T1OSC/T1CKI as reference clock
MSSPMSK ^(1,2)	CONFIG3H	MSSP 7-Bit Address Masking Mode Enable bit 1 = 7-Bit Address Masking mode enable 0 = 5-Bit Address Masking mode enable
IOL1WAY	CONFIG3H	IOLOCK Bit One-Way Set Enable bit 1 = The IOLOCK bit (PPSCON<0>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit (PPSCON<0>) can be set and cleared as needed, provided the unlock sequence has been completed.
WPCFG ⁽⁴⁾	CONFIG4L	Write/Erase Protect Configuration Words Page bit (valid when WPDIS = 0) 1 = Configuration Words page is not erase/write-protected unless WPEND and WPFP<5:0> settings include the Configuration Words page 0 = Configuration Words page is erase/write-protected, regardless of WPEND and WPFP<5:0> settings
WPEND	CONFIG4L	Write/Erase Protect Region Select bit (valid when WPDIS = 0) 1 = Flash pages, WPFP<5:0> to Configuration Words page, are write/erase-protected 0 = Flash pages, 0 to WPFP<5:0> are write/erase-protected

Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.

- 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
WPFP<5:0>	CONFIG4L	Write/Erase Protect Page Start/End Location bits Used with WPEND bit to define which pages in Flash will be write/erase-protected.
WPDIS	CONFIG4H	Write Protect Disable bit 1 = WPFP<5:0>, WPEND and WPCFG bits ignored; all Flash memory may be erased or written 0 = WPFP<5:0>, WPEND and WPCFG bits enabled; write/erase-protect active for the selected region(s)
DEV<2:0>	DEVID1	Device ID bits Used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.
REV<4:0>	DEVID1	Revision ID bits Indicate the device revision.
DEV<10:3>	DEVID2	Device ID bits Used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

- Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.
 - 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
 - 3: These bits are not implemented in PIC18F46J11 family devices.
 - **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-6: PIC18F47J13 AND PIC18F47J53 FAMILY DEVICES: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	CFGPLLEN	PLLDIV2	PLLDIV1	PLLDIV0	WDTEN	111- 1111
300001h	CONFIG1H	(2)	(2)	(2)	(2)	(4)	CP0	CPDIV1 ⁽³⁾	CPDIV0(3)	0111
300002h	CONFIG2L	IESO	FCMEN	CLKOEC	SOSCSEL1	SOSCSEL0	FOSC2	FOSC1	FOSC0	1111 1111
300003h	CONFIG2H	(2)	(2)	(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300004h	CONFIG3L	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	1111 1111
300005h	CONFIG3H	(2)	(2)	(2)	(2)	MSSPMSK	PLLSEL	ADCSEL	IOL1WAY	1111
300006h	CONFIG4L	WPCFG	WPFP6	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0	1111 1111
300007h	CONFIG4H	(2)	(2)	(2)	(2)	LS48MHZ ⁽³⁾	_	WPEND	WPDIS	1-11
3FFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0101 10xx

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

- **Note** 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.
 - 2: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.
 - 3: These bits are not implemented in PIC18F47J13 family devices.
 - 4: This bit should always be maintained at '0'.

TABLE 5-7: PIC18F47J13 AND PIC18F47J53 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description					
FOSC<2:0>	CONFIG2L ^(1,2)	Oscillator Selection bits 111 =EC+PLL (S/W controlled by PLLEN bit), CLKO on RA6 110 =EC oscillator (PLL always disabled) with CLKO on RA6 110 =HS+PLL (S/W controlled by PLLEN bit) 100 =HS oscillator (PLL always disabled) 011 =INTOSCPLLO, internal oscillator with PLL (S/W controlled by PLLEN bit), CLKO on RA6, port function on RA7 010 =INTOSCPLL, internal oscillator with PLL (S/W controlled by PLLEN bit), port function on RA6 and RA7 001 =INTOSCO, internal oscillator, INTOSC or INTRC (PLL always disabled), CLKO on RA6, port function on RA7 000 =INTOSC, internal oscillator INTOSC or INTRC (PLL always disabled), port function on RA6 and RA7					
WDTPS<3:0>	CONFIG2H ^(1,2)	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1					
DSWTPS<3:0>	CONFIG3L	Deep Sleep Watchdog Timer Postscale Select bits The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms. 1111 = 1:2,147,483,648 (25.7 days) 1110 = 1:536,870,912 (6.4 days) 1101 = 1:134,217,728 (38.5 hours) 1100 = 1:33,554,432 (9.6 hours) 1011 = 1:8,388,608 (2.4 hours) 1010 = 1:2,097,152 (36 minutes) 1001 = 1:524,288 (9 minutes) 1000 = 1:131,072 (135 seconds) 0111 = 1:32,768 (34 seconds) 0110 = 1:8,192 (8.5 seconds) 0110 = 1:2,048 (2.1 seconds) 0100 = 1:512 (528 ms) 0011 = 1:128 (132 ms) 0010 = 1:32 (33 ms) 0001 = 1:8 (8.3 ms) 0000 = 1:2 (2.1 ms)					
DSWDTEN	CONFIG3L	Deep Sleep Watchdog Timer Enable bit 1 = DSWDT enabled 0 = DSWDT disabled					
DSBOREN	CONFIG3L	Deep Sleep BOR Enable bit 1 = BOR enabled in Deep Sleep 0 = BOR disabled in Deep Sleep (does not affect operation in non Deep Sleep modes)					

- Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.
 - 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
 - **3:** These bits are not implemented in PIC18F47J13 family devices.
 - **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.
 - 5: Not implemented on PIC18F47J53 family devices.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Param No.	Symbol	Characterist	Min.	Max.	Units	Conditions			
	VDDCORE	External Supply Voltage for N Core During Programming O (PIC18LF devices)	2.25	2.75	V	(Note 1)			
D111	VDD	Supply Voltage During Programming	PIC18 LF XXJXX	VDDCORE	3.60	V	Normal programming (Note 2)		
			PIC18FXXJ10	2.70	3.60	V			
			PIC18FXXJ50 PIC18FXXJ11 PIC18FXXJ53 PIC18FXXJ13	2.35	3.60	V			
D112	IPP	Programming Current on MC		5	μΑ				
D113	IDDP	Supply Current During Progr		10	mA				
D031	VIL	Input Low Voltage	Vss	0.2 VDD	٧				
D041	VIH	Input High Voltage	0.8 VDD	Vdd	٧				
D080	Vol	Output Low Voltage		0.4	V	IOL = 3.4 mA @ 3.3V			
D090	Vон	Output High Voltage	2.4	_	٧	IOH = -2.0 mA @ 3.3V			
D012	Сю	Capacitive Loading on I/O pir		50	рF	To meet AC specifications			
	CF	Filter Capacitor Value on VCAP	PIC18 LF XXJXX	0.1	_	μF	(Note 1)		
			PIC18FXXJ10	4.7	18	μF			
			PIC18FXXJ13 PIC18FXXJ11 PIC18FXXJ5X	5.4	18	μF			

- Note 1: External power must be supplied to the VDDCORE/VCAP pin if the on-chip voltage regulator is disabled. See Section 2.1.1 "PIC18F2XJXX/4XJXX/ LF2XJXX/LF4XJXX Devices and the On-Chip Voltage Regulator" for more information.
 - 2: VDD must also be supplied to the AVDD pins during programming. AVDD and AVss should always be within ±0.3V of VDD and Vss, respectively.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-874-1

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393 China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90

Fax: 34-91-708-08-91 Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15