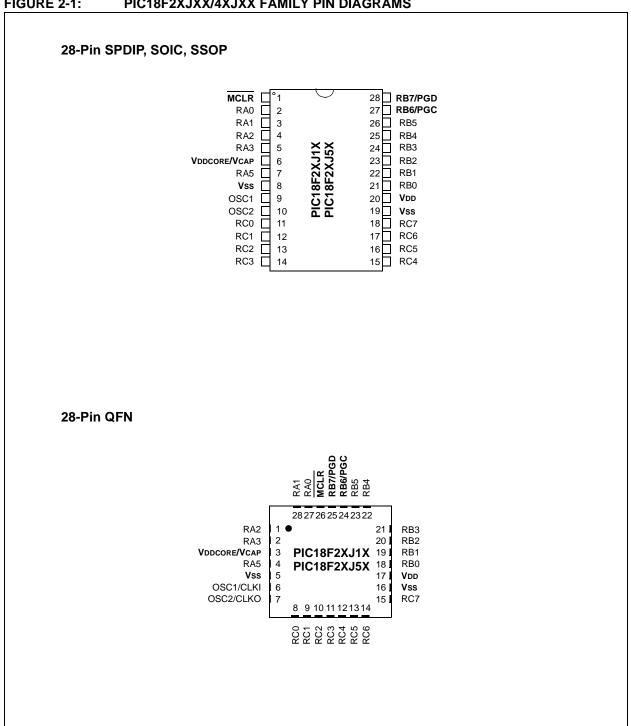
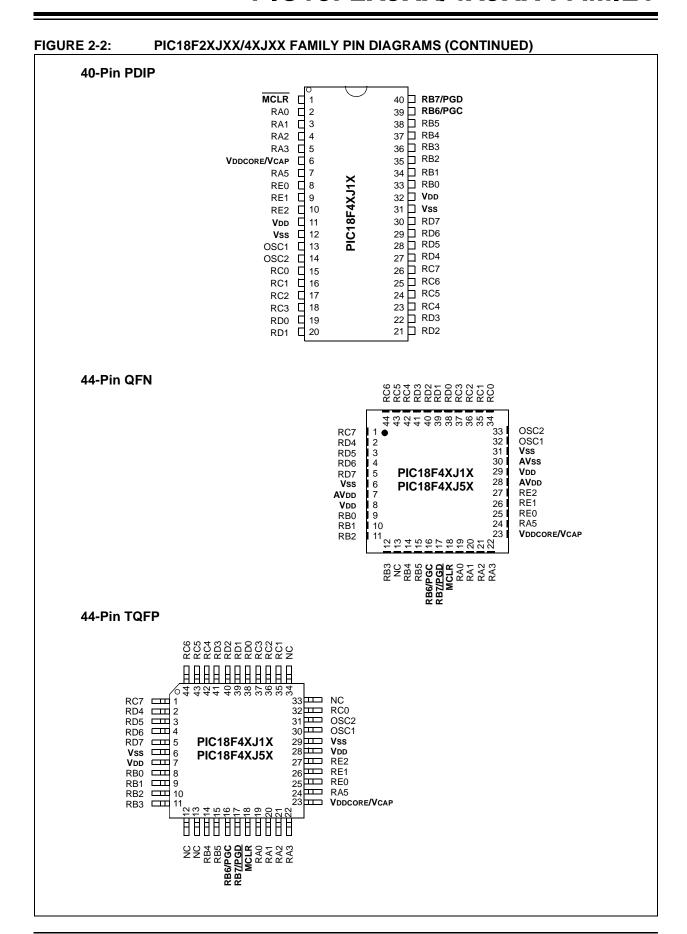


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44j50t-i-pt

FIGURE 2-1: PIC18F2XJXX/4XJXX FAMILY PIN DIAGRAMS

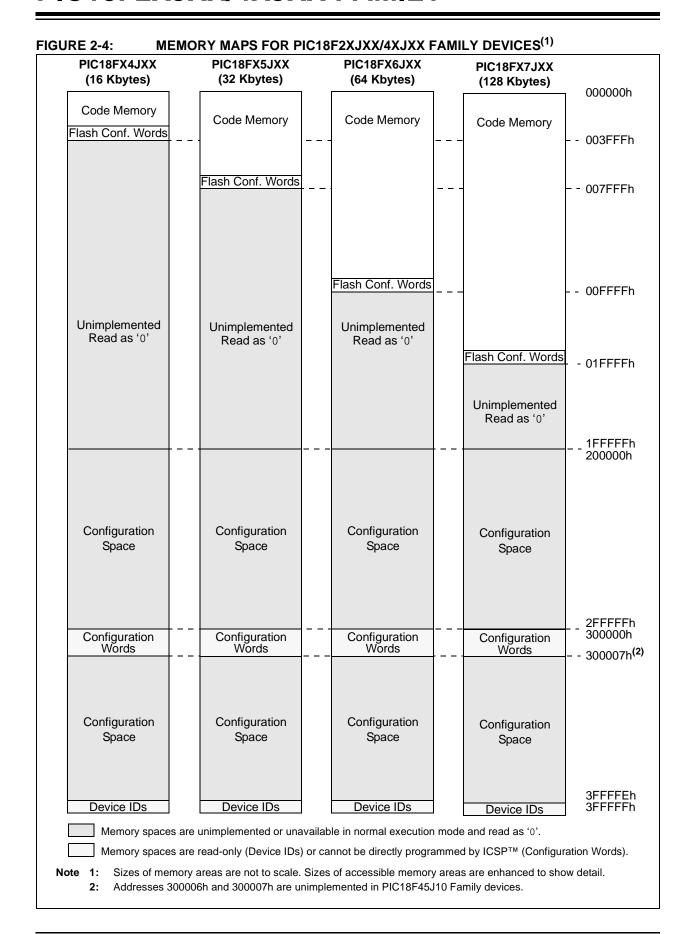
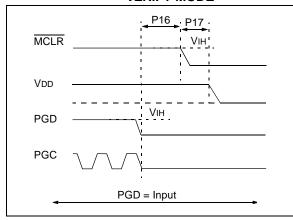



FIGURE 2-7: EXITING PROGRAM/ VERIFY MODE

2.5 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC, and are Least Significant bit (LSb) first.

2.5.1 FOUR-BIT COMMANDS

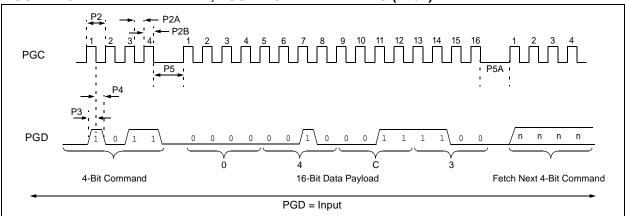
All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-3.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or eight bits of input data and eight bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-4. The 4-bit command is shown Most Significant bit (MSb) first. The command operand or "Data Payload" is shown <MSB><LSB>. Figure 2-8 demonstrates how to serially present a 20-bit command/operand to the device.

2.5.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.


TABLE 2-3: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in 16-bit instruction)	0000
Shift out TABLAT register	0010
Table Read	1000
Table Read, Post-Increment	1001
Table Read, Post-Decrement	1010
Table Read, Pre-Increment	1011
Table Write	1100
Table Write, Post-Increment by 2	1101
Table Write, Start Programming, Post-Increment by 2	1110
Table Write, Start Programming	1111

TABLE 2-4: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write, post-increment by 2

FIGURE 2-8: TABLE WRITE, POST-INCREMENT TIMING (1101)

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the memory within the device.

The EECON1 register is used to control Write or Row Erase operations. The WREN bit must be set to enable writes; this must be done prior to initiating a write sequence. It is strongly recommended that the WREN bit only be set immediately prior to a program or erase operation.

The FREE bit must be set in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit.

3.1 ICSP™ Erase

3.1.1 ICSP BULK ERASE

The PIC18F2XJXX/4XJXX Family devices may be Bulk Erased by writing 0180h to the table address, 3C0005h:3C0004h. The basic sequence is shown in Table 3-1 and demonstrated in Figure 3-1.

Since the code-protect Configuration bit is stored in the program code within code memory, a Bulk Erase operation will also clear any code-protect settings for the device.

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

TABLE 3-1: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	01 01	Write 01h to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	80 80	Write 80h TO 3C0004h to
		erase entire device.
0000	00 00	NOP
0000	00 00	Hold PGD low until erase
		completes.

FIGURE 3-1: BULK ERASE FLOW

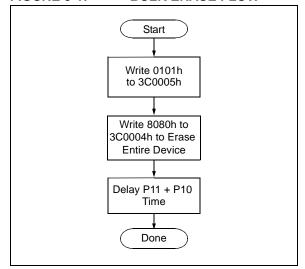


FIGURE 3-2: BULK ERASE TIMING

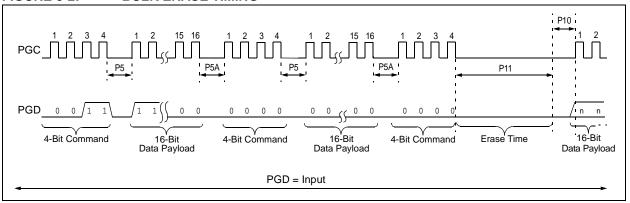
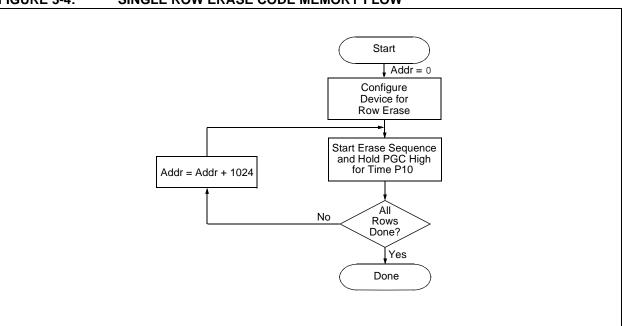



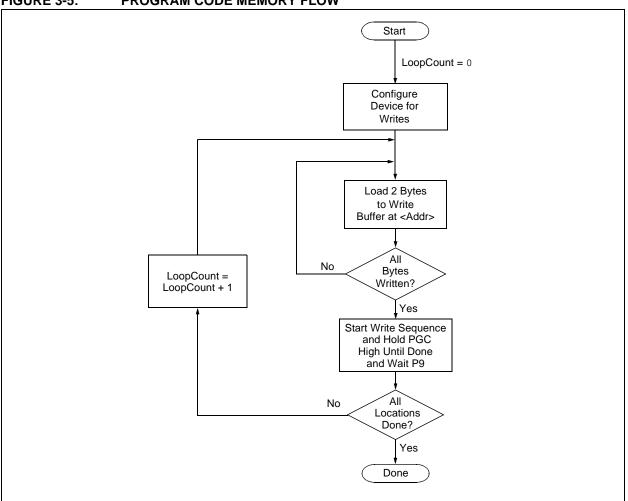
FIGURE 3-4: SINGLE ROW ERASE CODE MEMORY FLOW

3.2 Code Memory Programming

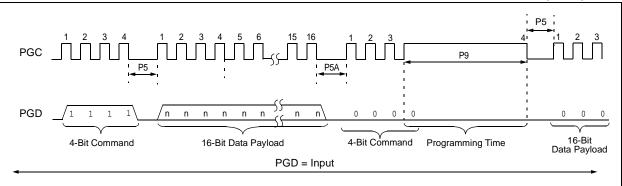
Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write buffer for all devices in the PIC18F2XJXX/4XJXX Family is 64 bytes. It can be mapped to any 64-byte block beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the 64-byte block of code memory indicated by the Table Pointer.

Write buffer locations are not cleared following a write operation; the buffer retains its data after the write is complete. This means that the buffer must be written with 64 bytes on each operation. If there are locations in the code memory that are to remain empty, the corresponding locations in the buffer must be filled with FFFFh. This avoids rewriting old data from the previous cycle.

The programming duration is internally timed. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.


The code sequence to program a PIC18F2XJXX/4XJXX Family device is shown in Table 3-3. The flowchart shown in Figure 3-5 depicts the logic necessary to completely write a PIC18F2XJXX/4XJXX Family device. The timing diagram that details the Start Programming command and parameter P9 is shown in Figure 3-6.

Note 1: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.


TABLE 3-3: WRITE CODE MEMORY CODE SEQUENCE

IADEL 3-3.	WATE CODE MEMORT CODE SEQUENCE				
4-Bit Command	Data Payload	Core Instruction			
Step 1: Enable wi	rites.				
0000	84 A6	BSF EECON1, WREN			
Step 2: Load write	e buffer.				
0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL as. Any unused locations should be filled with FFFFh.</addr[7:0]></addr[15:8]></addr[21:16]>			
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.			
Step 4: Load write	Step 4: Load write buffer for last two bytes.				
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9.			
To continue writin	To continue writing data, repeat Steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of the loop.				

FIGURE 3-5: PROGRAM CODE MEMORY FLOW

FIGURE 3-6: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

MODIFYING CODE MEMORY 3.2.1

The previous programming example assumed that the device had been Bulk Erased prior to programming. It may be the case, however, that the user wishes to modify only a section of an already programmed device.

As described in Section 4.2 "Verify Code Memory and Configuration Word", the appropriate number of bytes required for the erase buffer must be read out of code memory and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data. The code sequence is shown in Table 3-4.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

3.2.2 **CONFIGURATION WORD PROGRAMMING**

Since the Flash Configuration Words are stored in program memory, they are programmed as if they were program data. Refer to Section 3.2 "Code Memory Programming" and Section 3.2.1 "Modifying Code Memory" for methods and examples on programming or modifying program memory. See also Section 5.0 "Configuration Word" for additional information on the Configuration Words.

TABLE 3-4:	MODIFYING CODE	MEMORY
4-Bit Command	Data Payload	Core Instruction
Step 1: Set the Ta	ble Pointer for the block to b	pe erased.
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[8:15]></addr[21:16]>
Step 2: Read and	modify code memory (see §	Section 4.1 "Read Code Memory").
Step 3: Enable me	emory writes and set up an e	erase.
0000	84 A6 88 A6	BSF EECON1, WREN BSF EECON1, FREE
Step 4: Initiate era	ise.	
0000	82 A6 00 00	BSF EECON1, WR NOP - hold PGC high for time P10.
Step 5: Load write	buffer. The correct bytes wi	ill be selected based on the Table Pointer.
Step 7: To continu	e modifying data, repeat Ste	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL Write 2 bytes and post-increment address by 2. Repeat write operation 30 more times to fill the write buffer Write 2 bytes and start programming. NOP - hold PGC high for time P9. frewriting the entire 1024 bytes of the erase page size). eps 1 through 5, where the Address Pointer is incremented by 1024 bytes at each</addr[7:0]></addr[8:15]></addr[21:16]>
Step 8: Disable wi	•	
0000	94 A6	BCF EECON1, WREN

3.3 Endurance and Retention

To maintain the endurance specification of the Flash program memory cells, each byte should never be programmed more than once between erase operations. Before attempting to modify the contents of a specific byte of Flash memory a second time, an erase operation (either a Bulk Erase or a Row Erase which includes that byte) should be performed.

4.0 READING THE DEVICE

4.1 Read Code Memory

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

The 4-bit command is shifted in LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A

delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to reading the Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction
Step 1: Set Table	Pointer.	
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>
Step 2: Read mer	mory and then shift out on P	PGD, LSb to MSb.
1001	00 00	TBLRD *+

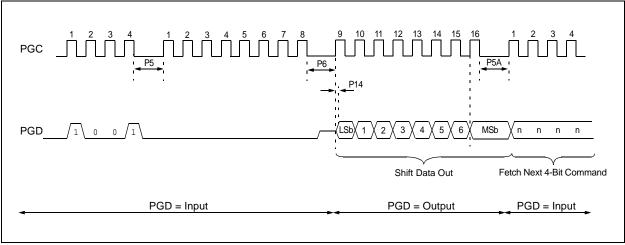


TABLE 5-3: PIC18F45J10 FAMILY DEVICES: BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
DEBUG	CONFIG1L	Background Debugger Enable bit 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to in-circuit debug
XINST	CONFIG1L	Extended Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
STVREN	CONFIG1L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow enabled 0 = Reset on stack overflow/underflow disabled
WDTEN	CONFIG1L	Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit)
CP0	CONFIG1H	Code Protection bit 1 = Program memory is not code-protected 0 = Program memory is code-protected
IESO	CONFIG2L	Internal/External Oscillator Switchover bit 1 = Oscillator Switchover mode enabled 0 = Oscillator Switchover mode disabled
FCMEN	CONFIG2L	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled
FOSC2	CONFIG2L	Default Oscillator Select bit 1 = Clock designated by FOSC<1:0> is enabled as system clock when OSCCON<1:0> = 00 0 = INTRC is enabled as system clock when OSCCON<1:0> = 00
FOSC<1:0>	CONFIG2L	Primary Oscillator Select bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 10 = EC oscillator, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control 00 = HS oscillator
WDTPS<3:0>	CONFIG2H	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1
CCP2MX	CONFIG3H	CCP2 MUX bit 1 = CCP2 is multiplexed with RC1 0 = CCP2 is multiplexed with RB3

TABLE 5-4: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	PLLDIV2 ⁽³⁾	PLLDIV1 ⁽³⁾	PLLDIV0(3)	WDTEN	111- 1111
300001h	CONFIG1H	(2)	(2)	(2)	(2)	(4)	CP0	CPDIV1 ⁽³⁾	CPDIV0(3)	0111
300002h	CONFIG2L	IESO	FCMEN	_	LPT1OSC	T1DIG	FOSC2	FOSC1	FOSC0	11-1 1111
300003h	CONFIG2H	(2)	(2)	(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300004h	CONFIG3L	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	1111 1111
300005h	CONFIG3H	(2)	(2)	(2)	(2)	MSSPMSK	_	1	IOL1WAY	11
300006h	CONFIG4L	WPCFG	WPEND	WPFP5 ⁽⁵⁾	WPFP4 ⁽⁶⁾	WPFP3	WPFP2	WPFP1	WPFP0	1111 1111
300007h	CONFIG4H	(2)	(2)	(2)	(2)	_	_	_	WPDIS	1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0100 00xx

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

- 2: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- 4: This bit should always be maintained at '0'.
- 5: This bit is not available on 32K and 16K memory devices (X4J11, X4J50, X5J11, and X5J50 devices) and should always be maintained at '0' on those devices.
- 6: This bit is not available on 16K memory devices (X4J11 and X4J50 devices) and should always be maintained at '0' on those devices.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
DEBUG	CONFIG1L	Background Debugger Enable bit 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to in-circuit debug
XINST	CONFIG1L	Enhanced Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
STVREN	CONFIG1L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow enabled 0 = Reset on stack overflow/underflow disabled
PLLDIV<2:0>(3)	CONFIG1L	PLL Input Divider bits Divider must be selected to provide a 4 MHz input into the 96 MHz PLL. 111 = No divide – oscillator used directly (4 MHz input) 110 = Oscillator divided by 2 (8 MHz input) 101 = Oscillator divided by 3 (12 MHz input) 100 = Oscillator divided by 4 (16 MHz input) 011 = Oscillator divided by 5 (20 MHz input) 010 = Oscillator divided by 6 (24 MHz input) 001 = Oscillator divided by 10 (40 MHz input) 000 = Oscillator divided by 12 (48 MHz input)
WDTEN	CONFIG1L	Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit)

- 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
CP0 ⁽⁴⁾	CONFIG1H	Code Protection bit 1 = Program memory is not code-protected 0 = Program memory is code-protected
CPDIV<1:0> ⁽³⁾	CONFIG1H	CPU System Clock Selection bits 11 = No CPU system clock divide 10 = CPU system clock divided by 2 01 = CPU system clock divided by 3 00 = CPU system clock divided by 6
IESO	CONFIG2L ^(1,2)	Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Oscillator Switchover mode enabled 0 = Oscillator Switchover mode disabled
FCMEN	CONFIG2L ^(1,2)	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled
LPT1OSC	CONFIG2L ^(1,2)	Low-Power Timer1 Oscillator Enable bit 1 = Timer1 oscillator configured for low-power operation 0 = Timer1 oscillator configured for higher-power operation
T1DIG	CONFIG2L ^(1,2)	Secondary Clock Source T1OSCEN Enforcement bit ⁽¹⁾ 1 = Secondary oscillator clock source may be selected (OSCCON <1:0> = 01) regardless of T1OSCEN state 0 = Secondary oscillator clock source may not be selected unless T1CON <3> = 1
FOSC<2:0>	CONFIG2L ^(1,2)	Oscillator Selection bits 111 =EC+PLL (S/W controlled by PLLEN bit), CLKO on RA6 110 =EC oscillator (PLL always disabled) with CLKO on RA6 101 =HS+PLL (S/W controlled by PLLEN bit) 100 =HS oscillator (PLL always disabled) 011 =INTOSCPLLO, internal oscillator with PLL (S/W controlled by PLLEN bit), CLKO on RA6, port function on RA7 010 =INTOSCPLL, internal oscillator with PLL (S/W controlled by PLLEN bit), port function on RA6 and RA7 001 =INTOSCO, internal oscillator, INTOSC or INTRC (PLL always disabled), CLKO on RA6, port function on RA7 000 =INTOSC, internal oscillator INTOSC or INTRC (PLL always disabled), port function on RA6 and RA7
WDTPS<3:0>	CONFIG2H ^(1,2)	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

- 2: The Configuration bits are reset to '1' only on VDD Reset, it is reloaded with the programmed value at any device Reset.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-5: PIC18F46J11 AND PIC18F46J50 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
DSWTPS<3:0>	CONFIG3L	Deep Sleep Watchdog Timer Postscale Select bits The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms. 1111 = 1:2,147,483,648 (25.7 days) 1110 = 1:536,870,912 (6.4 days) 1101 = 1:134,217,728 (38.5 hours) 1100 = 1:33,554,432 (9.6 hours) 1011 = 1:8,388,608 (2.4 hours) 1010 = 1:2,097,152 (36 minutes) 1001 = 1:524,288 (9 minutes) 1000 = 1:131,072 (135 seconds) 0111 = 1:32,768 (34 seconds) 0110 = 1:8,192 (8.5 seconds) 0100 = 1:512 (528 ms) 0011 = 1:128 (132 ms) 0010 = 1:32 (33 ms) 0001 = 1:8 (8.3 ms) 0000 = 1:2 (2.1 ms)
DSWDTEN	CONFIG3L	Deep Sleep Watchdog Timer Enable bit 1 = DSWDT enabled 0 = DSWDT disabled
DSBOREN	CONFIG3L	Deep Sleep BOR Enable bit 1 = BOR enabled in Deep Sleep 0 = BOR disabled in Deep Sleep (does not affect operation in non Deep Sleep modes)
RTCOSC	CONFIG3L	RTCC Reference Clock Select bit 1 = RTCC uses T1OSC/T1CKI as reference clock 0 = RTCC uses INTRC as reference clock
DSWDTOSC	CONFIG3L	DSWDT Reference Clock Select bit 1 = DSWDT uses INTRC as reference clock 0 = DSWDT uses T1OSC/T1CKI as reference clock
MSSPMSK ^(1,2)	CONFIG3H	MSSP 7-Bit Address Masking Mode Enable bit 1 = 7-Bit Address Masking mode enable 0 = 5-Bit Address Masking mode enable
IOL1WAY	CONFIG3H	IOLOCK Bit One-Way Set Enable bit 1 = The IOLOCK bit (PPSCON<0>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit (PPSCON<0>) can be set and cleared as needed, provided the unlock sequence has been completed.
WPCFG ⁽⁴⁾	CONFIG4L	Write/Erase Protect Configuration Words Page bit (valid when WPDIS = 0) 1 = Configuration Words page is not erase/write-protected unless WPEND and WPFP<5:0> settings include the Configuration Words page 0 = Configuration Words page is erase/write-protected, regardless of WPEND and WPFP<5:0> settings
WPEND	CONFIG4L	Write/Erase Protect Region Select bit (valid when WPDIS = 0) 1 = Flash pages, WPFP<5:0> to Configuration Words page, are write/erase-protected 0 = Flash pages, 0 to WPFP<5:0> are write/erase-protected

- 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
- 3: These bits are not implemented in PIC18F46J11 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.

TABLE 5-7: PIC18F47J13 AND PIC18F47J53 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description				
FOSC<2:0>	CONFIG2L ^(1,2)	Oscillator Selection bits 111 =EC+PLL (S/W controlled by PLLEN bit), CLKO on RA6 110 =EC oscillator (PLL always disabled) with CLKO on RA6 101 =HS+PLL (S/W controlled by PLLEN bit) 100 =HS oscillator (PLL always disabled) 011 =INTOSCPLLO, internal oscillator with PLL (S/W controlled by PLLEN bit), CLKO on RA6, port function on RA7 010 =INTOSCPLL, internal oscillator with PLL (S/W controlled by PLLEN bit), port function on RA6 and RA7 001 =INTOSCO, internal oscillator, INTOSC or INTRC (PLL always disabled), CLKO on RA6, port function on RA7 000 =INTOSC, internal oscillator INTOSC or INTRC (PLL always disabled), port function on RA6 and RA7				
WDTPS<3:0>	CONFIG2H ^(1,2)	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1				
DSWTPS<3:0>	CONFIG3L	Deep Sleep Watchdog Timer Postscale Select bits The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms. 1111 = 1:2,147,483,648 (25.7 days) 1110 = 1:536,870,912 (6.4 days) 1101 = 1:134,217,728 (38.5 hours) 1100 = 1:33,554,432 (9.6 hours) 1011 = 1:8,388,608 (2.4 hours) 1010 = 1:2,097,152 (36 minutes) 1001 = 1:524,288 (9 minutes) 1000 = 1:131,072 (135 seconds) 0111 = 1:32,768 (34 seconds) 0110 = 1:8,192 (8.5 seconds) 0110 = 1:2,048 (2.1 seconds) 0100 = 1:512 (528 ms) 0011 = 1:128 (132 ms) 0010 = 1:32 (33 ms) 0001 = 1:8 (8.3 ms) 0000 = 1:2 (2.1 ms)				
DSWDTEN	CONFIG3L	Deep Sleep Watchdog Timer Enable bit 1 = DSWDT enabled 0 = DSWDT disabled				
DSBOREN	CONFIG3L	Deep Sleep BOR Enable bit 1 = BOR enabled in Deep Sleep 0 = BOR disabled in Deep Sleep (does not affect operation in non Deep Sleep modes)				

- Note 1: The Configuration bits can only be programmed indirectly by programming the Flash Configuration Word.
 - 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
 - **3:** These bits are not implemented in PIC18F47J13 family devices.
 - **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.
 - 5: Not implemented on PIC18F47J53 family devices.

TABLE 5-7: PIC18F47J13 AND PIC18F47J53 FAMILY DEVICES: BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description				
RTCOSC	CONFIG3L	RTCC Reference Clock Select bit 1 = RTCC uses T10SC/T1CKI as reference clock 0 = RTCC uses INTRC as reference clock				
DSWDTOSC	CONFIG3L	DSWDT Reference Clock Select bit 1 = DSWDT uses INTRC as reference clock 0 = DSWDT uses T1OSC/T1CKI as reference clock				
MSSPMSK ^(1,2)	CONFIG3H	MSSP 7-Bit Address Masking Mode Enable bit 1 = 7-Bit Address Masking mode enable 0 = 5-Bit Address Masking mode enable				
PLLSEL ⁽⁵⁾	CONFIG3H	PLL Selection bit 1 = 4x PLL selected 0 = 96 MHz PLL selected				
ADCSEL	CONFIG3H	ADC Mode Selection bit 1 = 10-Bit ADC mode selected 0 = 12-Bit ADC mode selected				
IOL1WAY	CONFIG3H	IOLOCK Bit One-Way Set Enable bit 1 = The IOLOCK bit (PPSCON<0>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit (PPSCON<0>) can be set and cleared as needed, provided the unlock sequence has been completed				
WPCFG	CONFIG4L	Write/Erase Protect Configuration Words Page bit (valid when WPDIS = 0) 1 = Configuration Words page is not erase/write-protected unless WPEND and WPFP<6:0> settings include the Configuration Words page 0 = Configuration Words page is erase/write-protected, regardless of WPEND and WPFP<6:0>				
WPFP<6:0>	CONFIG4L	Write/Erase Protect Page Start/End Location bits Used with WPEND bit to define which pages in Flash will be write/erase-protected.				
WPEND	CONFIG4H	Write/Erase Protect Region Select bit (valid when WPDIS = 0) 1 = Flash pages, WPFP<6:0> to Configuration Words page, are write/erase-protected 0 = Flash pages, 0 to WPFP<6:0> are write/erase-protected				
WPDIS	CONFIG4H	Write Protect Disable bit 1 = WPFP<6:0>, WPEND and WPCFG bits ignored; all Flash memory may be erased or written 0 = WPFP<6:0>, WPEND and WPCFG bits enabled; write/erase-protect active for the selected region(s)				
LS48MHZ ⁽³⁾	CONFIG4H	System Clock Selection bit 1 = System clock is expected at 48 MHz, FS/LS USB CLKEN's divide-by is set to 8 0 = System clock is expected at 24 MHz, FS/LS USB CLKEN's divide-by is set to 4				
DEV<2:0>	DEVID1	Device ID bits Used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.				
REV<4:0>	DEVID1	Revision ID bits Indicate the device revision.				
DEV<10:3>	DEVID2	Device ID bits Used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.				

- 2: The Configuration bits are reset to '1' only on VDD Reset; it is reloaded with the programmed value at any device Reset.
- **3:** These bits are not implemented in PIC18F47J13 family devices.
- **4:** Once this bit is cleared, all the Configuration registers which reside in the last page are also protected. To disable code protection, perform an ICSP™ Bulk Erase operation.
- **5:** Not implemented on PIC18F47J53 family devices.

Table 5-9 describes how to calculate the checksum for each device.

TABLE 5-9: CHECKSUM COMPUTATION

IABLE 5-9:	ABLE 5-9: CHECKSUM COMPUTATION			
Device	Code Protection	Checksum		
PIC18F24J10 PIC18F44J10	Off	SUM[000000:003FF7] + ([003FF8] & E1h) + ([003FF9] & 04h) + ([003FFA] & C7h) + ([003FFB] & 0Fh) + ([003FFD] & 01h)		
	On	0000h		
PIC18F24J11 PIC18F44J11	Off	SUM[000000:003FF7] + ([003FF8] & E1h) + ([003FF9] & FCh) + ([003FFA] & DFh) + ([003FFB] & FFh) + ([003FFC] & FFh) + ([003FFD] & F9h) + ([003FFE] & FFh) + ([003FFF] & F1h)		
	On	0000h		
PIC18F24J50 PIC18F44J50	Off	SUM[000000:003FF7] + ([003FF8] & EFh) + ([003FF9] & FFh) + ([003FFA] & DFh) + ([003FFB] & FFh) + ([003FFC] & FFh) + ([003FFF] & F9h) + ([003FFE] & FFh) + ([003FFF] & F1h)		
	On	0000h		
PIC18F25J10 PIC18F45J10	Off	SUM[000000:007FF7] + ([007FF8] & E1h) + ([007FF9] & 04h) + ([007FFA] & C7h) + ([007FFB] & 0Fh) + ([007FFD] & 01h)		
1 10 101 100 10	On	0000h		
PIC18F25J11 PIC18F45J11	Off	SUM[000000:007FF7] + ([007FF8] & E1h) + ([007FF9] & FCh) + ([007FFA] & DFh) + ([007FFB] & FFh) + ([007FFC] & FFh) + ([007FFE] & F9h) + ([007FFE] & F1h)		
	On	0000h		
PIC18F25J50 PIC18F45J50	Off	SUM[000000:007FF7] + ([007FF8] & EFh) + ([007FF9] & FFh) + ([007FFA] & DFh) + ([007FFB] & FFh) + ([007FFC] & FFh) + ([007FFE] & FFh) + ([007FFF] & F1h)		
	On	0000h		
PIC18F26J11 PIC18F46J11	Off	SUM[000000:00FFF7] + ([00FFF8] & E1h) + ([00FFF9] & FCh) + ([00FFFA] & DFh) + ([00FFFB] & FFh) + ([00FFFD] & F9h) + ([00FFFE] & FFh) + ([00FFFF] & F1h)		
	On	0000h		
PIC18F26J50 PIC18F46J50	Off	SUM[000000:00FFF7] + ([00FFF8] & EFh) + ([00FFF9] & FFh) + ([00FFFA] & DFh) + ([00FFFB] & FFh) + ([00FFFD] & F9h) + ([00FFFE] & FFh) + ([00FFFF] & F1h)		
	On	0000h		
PIC18F26J13 PIC18F46J13	Off	SUM[000000:00FFF7] + ([00FFF8] & FFh) + ([00FFF9] & FCh) +([00FFFA] & FFh) + ([00FFFB] & FFh) + ([00FFFE] & BFh) + ([00FFFF] & F3h)		
	On	0000h		
PIC18F26J53 PIC18F46J53	Off	SUM[000000:00FFF7] + ([00FFF8] & FFh) + ([00FFF9] & FFh) +([00FFFA] & FFh) + ([00FFFB] & FFh) + ([00FFFE] & BFh) + ([00FFFF] & FBh)		
	On	0000h		
PIC18F27J13 PIC18F47J13	Off	SUM[000000:01FFF7] + ([01FFF8] & FFh) + ([01FFF9] & FCh) + ([01FFFA] & FFh) + ([01FFFB] & FFh) + ([01FFFE] & FFh) + ([01FFFF] & F3h)		
	On	0000h		
PIC18F27J53 PIC18F47J53	Off	SUM[000000:01FFF7] + ([01FFF8] & FFh) + ([01FFF9] & FFh) + ([01FFFA] & FFh) + ([01FFFB] & FFh) + ([01FFFE] & FFh) + ([01FFFF] & FBh)		
	On	0000h		

Legend: [a] = Value at address a; SUM[a:b] = Sum of locations a to b inclusive; + = Addition; & = Bitwise AND. All addresses are hexadecimal.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

- 1											
Param No.	Symbol	Characterist	Min.	Max.	Units	Conditions					
	VDDCORE	External Supply Voltage for N Core During Programming O (PIC18LF devices)	2.25	2.75	V	(Note 1)					
D111 VDD	VDD	Supply Voltage During Programming	PIC18 LF XXJXX	VDDCORE	3.60	V	Normal programming (Note 2)				
			PIC18FXXJ10	2.70	3.60	V					
			PIC18FXXJ50 PIC18FXXJ11 PIC18FXXJ53 PIC18FXXJ13	2.35	3.60	V					
D112	IPP	Programming Current on MC		5	μΑ						
D113	IDDP	Supply Current During Progr		10	mA						
D031	VIL	Input Low Voltage	Vss	0.2 VDD	٧						
D041	VIH	Input High Voltage		0.8 VDD	Vdd	٧					
D080	Vol	Output Low Voltage		0.4	V	IOL = 3.4 mA @ 3.3V					
D090	Vон	Output High Voltage	2.4	_	٧	IOH = -2.0 mA @ 3.3V					
D012	Сю	Capacitive Loading on I/O pir		50	рF	To meet AC specifications					
CF	CF	Filter Capacitor Value on VCAP	PIC18 LF XXJXX	0.1	_	μF	(Note 1)				
			PIC18FXXJ10	4.7	18	μF					
			PIC18FXXJ13 PIC18FXXJ11 PIC18FXXJ5X	5.4	18	μF					

- Note 1: External power must be supplied to the VDDCORE/VCAP pin if the on-chip voltage regulator is disabled. See Section 2.1.1 "PIC18F2XJXX/4XJXX/ LF2XJXX/LF4XJXX Devices and the On-Chip Voltage Regulator" for more information.
 - 2: VDD must also be supplied to the AVDD pins during programming. AVDD and AVss should always be within ±0.3V of VDD and Vss, respectively.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200

Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15