

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 014110	
Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx330f064h-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

100-PIN TQFP	(TOP VIEW) ^(1,2)
--------------	-----------------------------

PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L

100

			1
Pin #	Full Pin Name	Pin #	Full Pin Name
71	RPD11/PMCS1/RD11	86	VDD
72	RPD0/INT0/RD0	87	RPF0/PMD11/RF0
73	SOSCI/RPC13/RC13	88	RPF1/PMD10/RF1
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1
75	Vss	90	RPG0/PMD8/RG0
76	AN24/RPD1/RD1	91	TRCLK/RA6
77	AN25/RPD2/RD2	92	TRD3/CTED8/RA7
78	AN26/RPD3/RD3	93	PMD0/RE0
79	RPD12/PMD12/RD12	94	PMD1/RE1
80	PMD13/RD13	95	TRD2/RG14
81	RPD4/PMWR/RD4	96	TRD1/RG12
82	RPD5/PMRD/RD5	97	TRD0/RG13
83	PMD14/RD6	98	AN20/CTPLS/PMD2/RE2
84	PMD15/RD7	99	RPE3/PMD3/RE3
85	VCAP	100	AN21/PMD4/RE4

 Note
 1:
 The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX330/350/370/430/450/470 family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used. NOTES:

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

Internet Course(1)	IDO #	Vector		Persistent			
Interrupt Source ⁽¹⁾	IRQ #	#	Flag	Enable	Priority	Sub-priority	Interrupt
		Highe	st Natural O	der Priority			
CT – Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
CS0 – Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
CS1 – Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
INT0 – External Interrupt	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
T1 – Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
IC1E – Input Capture 1 Error	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
IC1 – Input Capture 1	6	5	IFS0<6>	IEC0<6>	IPC1<12:10>	IPC1<9:8>	Yes
OC1 – Output Compare 1	7	6	IFS0<7>	IEC0<7>	IPC1<20:18>	IPC1<17:16>	No
INT1 – External Interrupt 1	8	7	IFS0<8>	IEC0<8>	IPC1<28:26>	IPC1<25:24>	No
T2 – Timer2	9	8	IFS0<9>	IEC0<9>	IPC2<4:2>	IPC2<1:0>	No
IC2E – Input Capture 2	10	9	IFS0<10>	IEC0<10>	IPC2<12:10>	IPC2<9:8>	Yes
IC2 – Input Capture 2	11	9	IFS0<11>	IEC0<11>	IPC2<12:10>	IPC2<9:8>	Yes
OC2 – Output Compare 2	12	10	IFS0<12>	IEC0<12>	IPC2<20:18>	IPC2<17:16>	No
INT2 – External Interrupt 2	13	11	IFS0<13>	IEC0<13>	IPC2<28:26>	IPC2<25:24>	No
T3 – Timer3	14	12	IFS0<14>	IEC0<14>	IPC3<4:2>	IPC3<1:0>	No
IC3E – Input Capture 3	15	13	IFS0<15>	IEC0<15>	IPC3<12:10>	IPC3<9:8>	Yes
IC3 – Input Capture 3	16	13	IFS0<16>	IEC0<16>	IPC3<12:10>	IPC3<9:8>	Yes
OC3 – Output Compare 3	17	14	IFS0<17>	IEC0<17>	IPC3<20:18>	IPC3<17:16>	No
INT3 – External Interrupt 3	18	15	IFS0<18>	IEC0<18>	IPC3<28:26>	IPC3<25:24>	No
T4 – Timer4	19	16	IFS0<19>	IEC0<19>	IPC4<4:2>	IPC4<1:0>	No
IC4E – Input Capture 4 Error	20	17	IFS0<20>	IEC0<20>	IPC4<12:10>	IPC4<9:8>	Yes
IC4 – Input Capture 4	21	17	IFS0<21>	IEC0<21>	IPC4<12:10>	IPC4<9:8>	Yes
OC4 – Output Compare 4	22	18	IFS0<22>	IEC0<22>	IPC4<20:18>	IPC4<17:16>	No
INT4 – External Interrupt 4	23	19	IFS0<23>	IEC0<23>	IPC4<28:26>	IPC4<25:24>	No
T5 – Timer5	24	20	IFS0<24>	IEC0<24>	IPC5<4:2>	IPC5<1:0>	No
IC5E – Input Capture 5 Error	25	21	IFS0<25>	IEC0<25>	IPC5<12:10>	IPC5<9:8>	Yes
IC5 – Input Capture 5	26	21	IFS0<26>	IEC0<26>	IPC5<12:10>	IPC5<9:8>	Yes
OC5 – Output Compare 5	27	22	IFS0<27>	IEC0<27>	IPC5<20:18>	IPC5<17:16>	No
AD1 – ADC1 Convert done	28	23	IFS0<28>	IEC0<28>	IPC5<28:26>	IPC5<25:24>	Yes
FSCM – Fail-Safe Clock Monitor	29	24	IFS0<29>	IEC0<29>	IPC6<4:2>	IPC6<1:0>	No
RTCC – Real-Time Clock and Calendar	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>	No
FCE – Flash Control Event	31	26	IFS0<31>	IEC0<31>	IPC6<20:18>	IPC6<17:16>	No
CMP1 – Comparator Interrupt	32	27	IFS1<0>	IEC1<0>	IPC6<28:26>	IPC6<25:24>	No
CMP2 – Comparator Interrupt	33	28	IFS1<1>	IEC1<1>	IPC7<4:2>	IPC7<1:0>	No
USB – USB Interrupts	34	29	IFS1<2>	IEC1<2>	IPC7<12:10>	IPC7<9:8>	Yes
SPI1E – SPI1 Fault	35	30	IFS1<3>	IEC1<3>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1RX – SPI1 Receive Done	36	30	IFS1<4>	IEC1<4>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1TX – SPI1 Transfer Done	37	30	IFS1<5>	IEC1<5>	IPC7<20:18>	IPC7<17:16>	Yes
U1E – UART1 Fault	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>	Yes
U1RX – UART1 Receive Done	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>	Yes
U1TX – UART1 Transfer Done	40	31	IFS1<8>	IEC1<8>	IPC7<28:26>	IPC7<25:24>	Yes
I2C1B – I2C1 Bus Collision Event	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1S – I2C1 Slave Event	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1M – I2C1 Master Event	43	32	IFS1<11>	IEC1<11>	IPC8<4:2>	IPC8<1:0>	Yes
CNA – PORTA Input Change Interrupt	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of available peripherals.

TABLE 7-2: IN	ITERRUPT REGISTER	MAP (CONTINUED)
---------------	-------------------	-----------------

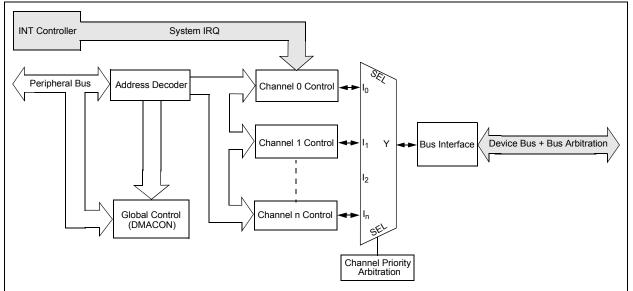
ess		⁰								Bits																																			
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets																										
10F0	IPC6	31:16	_	_	—	(CMP1IP<2:0	>	CMP1IS	S<1:0>	_	_	—	F	CEIP<2:0>		FCEIS	S<1:0>	0000																										
101.0	IF CO	15:0	—	_	—		RTCCIP<2:0	>	RTCCIS	S<1:0>	_	_	—	FS	SCMIP<2:0	>	FSCMIS<1:0>		0000																										
1100	IPC7	31:16		_	_		U1IP<2:0>	J1IP<2:0> U1		<1:0>	_	_	_	SPI1IP<2:0>		SPI1IP<2:0>		SPI1IS<1:0>		0000																									
1100	IPC7	15:0		_	_	ι	JSBIP<2:0>(2	2)	USBIS<	:1:0> (2)	_	_	_	CI	MP2IP<2:0	>	CMP2	S<1:0>	0000																										
1110	IPC8	31:16	_	—	—		SPI2IP<2:0>		SPI2IS	<1:0>	_	_	—	PMPIP<2:0>			PMPIS<1:0>		0000																										
1110	IPCo	15:0	_	—	—		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIP<2:0>		CNIS<1:		CNIS<1:0>		_	_	—	12	2C1IP<2:0>		12C115	6<1:0>	0000
1100	IPC9	31:16	_	_	_		U4IP<2:0>		U4IP<2:0>		U4IP<2:0>		U4IS<	<1:0>	_	_	—	l	J3IP<2:0>		U3IS-	<1:0>	0000																						
1120	IPC9	15:0		_	_		I2C2IP<2:0>		I2C2IS	<1:0>	_	_	_	l	J2IP<2:0>		U2IS-	<1:0>	0000																										
1120	IPC10	31:16	_	—	—	I	DMA1IP<2:0	>	DMA1IS	S<1:0>	_	_	—	DI	MA0IP<2:0	>	DMA0	S<1:0>	0000																										
1130	IPCIU	15:0	_	_	_	(CTMUIP<2:0	>	CTMU	S<1:0>	_	_	—	l	J5IP<2:0>		U5IS-	<1:0>	0000																										
11.10	IPC11	31:16	_	—	—	—	—	—	—	—	_	_	—	—	—	—	_	_	0000																										
1140	IPUTT	15:0	_	-			DMA3IP<2:0	>	DMA3IS	S<1:0>	_	_	_	DI	MA2IP<2:0	>	DMA2I	S<1:0>	0000																										

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

Following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- · Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	DCH1SSIZ	31:16	_	_	_	_		_	_	_		—	_	_	—	_	_		0000
0170	DOITIOOIZ	15:0								CHSSIZ	2<15:0>	t			i		i		0000
3180	DCH1DSIZ	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0100	DOITIDOIL	15:0								CHDSIZ	2<15:0>								0000
3190	DCH1SPTR	31:16	—	—	_	—	—	—	_	—	—	—	_	—	—	_	—	—	0000
		15:0								CHSPT	R<15:0>								0000
31A0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHDPTI	R<15:0>								0000
31B0	DCH1CSIZ	31:16	_	_	—		_	—	_	—	_	—	_	—	_	—	—	_	0000
		15:0								CHCSIZ	2<15:0>								0000
31C0	DCH1CPTR	31:16	_	_	—	—	_	—	_	—	—	—	_	—	—	—	—	_	0000
		15:0								CHCPTI	≺<15:0>								0000
31D0	DCH1DAT	31:16	_	_			_			_	_	—	_			_	—	_	0000
		15:0		_		_	_			_				CHPDA					0000
31E0	DCH2CON	31:16	—	_		_	_			—	-	-	—	—	_	-	_		0000
-		15:0	CHBUSY	_	_	_	_	_		CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	1<1:0>	0000
31F0	DCH2ECON	31:16	—	_	_		-	_	_	_	CFORCE	CABORT	PATEN	CHAIR					00FF
		15:0				CHSIR					CHSDIE	CABORT	CHDDIE	SIRQEN CHDHIE	AIRQEN CHBCIE				FFF8
3200	DCH2INT	31:16 15:0	—	_	_	_	_	_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
-		31:16	—	_	_	_	_	_	—	—	CHODIF	CHONIF	CHUDIF	CHDHIF	CUBCIL	CHCCIF	CHIAIF	CHERIF	0000
3210	DCH2SSA	15:0								CHSSA	<31:0>								0000
-		31:16																	0000
3220	DCH2DSA	15:0								CHDSA	<31:0>								0000
		31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
3230	DCH2SSIZ	15:0								CHSSIZ	/<15 [.] 0>								0000
		31:16	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	0000
3240	DCH2DSIZ	15:0								CHDSIZ	/<15 [.] 0>								0000
		31:16	_		_			_		_			_	_					0000
3250	DCH2SPTR	15:0								CHSPT	R<15:0>								0000
		31:16	_		_			_		_	_		_	_				_	0000
3260	DCH2DPTR	15:0								CHDPT	R<15:0>								0000
		31:16	_					_		_	_		_	_					0000
3270	DCH2CSIZ	15:0								CHCSIZ	2<15:0>								0000
Leger	d: x = 11		value on R	eset: — = I	unimplemer	nted, read a	s '0'. Reset	values are	shown in h										

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	-	-	-	—	-	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-		-				—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	-	-	-	-	—	-	—	-
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS
7:0	BTSEF	BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF
	DISEF	DIVIAEF	DIVIAEL, ,	BIVEF	DENOER	GRUIDEF	EOFEF ^(3,5)	FIDEF

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet is rejected due to bit stuff error
 - 0 = Packet is accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out

bit 3 **DFN8EF:** Data Field Size Error Flag bit

- 1 = Data field received is not an integral number of bytes
- 0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

- 1 = Data packet rejected due to CRC16 error
- 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX
RPB15	RPB15R	RPB15R<3:0>	0011 = REFCLKO 0100 = U5TX ⁽⁴⁾
RPD4	RPD4R	RPD4R<3:0>	0100 = 001 x 0
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved
RPE3	RPE3R	RPE3R<3:0>	0111 = <u>SS1</u>
RPB7	RPB7R	RPB7R<3:0>	1000 = SDO1
RPB2	RPB2R	RPB2R<3:0>	1001 = Reserved
RPF12 ⁽⁴⁾	RPF12R	RPF12R<3:0>	1010 = Reserved
RPD12 ⁽⁴⁾	RPD12R	RPD12R<3:0>	
RPF8 ⁽⁴⁾	RPF8R	RPF8R<3:0>	1100 - Reserved
RPC3 ⁽⁴⁾	RPC3R	RPC3R<3:0>	1110 = Reserved
RPE9 ⁽⁴⁾	RPE9R	RPE9R<3:0>	1111 = Reserved
RPD1	RPD1R	RPD1R<3:0>	0000 = No Connect
RPG9	RPG9R	RPG9R<3:0>	0001 = U2RTS
RPB14	RPB14R	RPB14R<3:0>	0010 = Reserved 0011 = U1RTS
RPD0	RPD0R	RPD0R<3:0>	$0100 = U5TX^{(4)}$
RPD8	RPD8R	RPD8R<3:0>	0101 = Reserved
RPB6	RPB6R	RPB6R<3:0>	0110 = <u>SS2</u>
RPD5	RPD5R	RPD5R<3:0>	0111 = Reserved 1000 = SDO1
RPF3 ⁽³⁾	RPF3R	RPF3R<3:0>	1000 = SDOT
RPF6 ⁽¹⁾	RPF6R	RPF6R<3:0>	1010 = Reserved
RPF13 ⁽⁴⁾	RPF13R	RPF13R<3:0>	1011 = OC2
RPC2 ⁽⁴⁾	RPC2R	RPC2R<3:0>	1100 = OC1 1101 = Reserved
RPE8 ⁽⁴⁾	RPE8R	RPE8R<3:0>	1110 = Reserved
RPF2 ⁽⁵⁾	RPF2R	RPF2R<3:0>	1111 = Reserved

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

Bit Range	Bit 31/23/15/7			Bit Bit 29/21/13/5 28/20/12/4		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	_	_		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	—	-	_	_	_	—
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	_	SIDL	_	_		_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_		_	_	_	_	_	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = CPU Idle Mode halts CN operation
 - 0 = CPU Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_		_	_	_	_	—
23:16	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0
23.10	—	_			_	_	_	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	_	SIDL	TWDIS	TWIP	_	_	—
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE		TCKPS	S<1:0>	_	TSYNC	TCS	_

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

DIL 31-10	ommplemented: Read as 0
bit 15	ON: Timer On bit ⁽¹⁾
	1 = Timer is enabled
	0 = Timer is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode
bit 12	TWDIS: Asynchronous Timer Write Disable bit
	1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11	TWIP: Asynchronous Timer Write in Progress bit
	In Asynchronous Timer mode:
	1 = Asynchronous write to TMR1 register in progress
	0 = Asynchronous write to TMR1 register complete
	In Synchronous Timer mode: This bit is read as '0'.
bit 10-8	Unimplemented: Read as '0'
bit 7	TGATE: Timer Gated Time Accumulation Enable bit
	When TCS = 1:
	This bit is ignored.
	When TCS = 0: 1 = Gated time accumulation is enabled
	0 = Gated time accumulation is disabled
bit 6	Unimplemented: Read as '0'
bit 5-4	TCKPS<1:0>: Timer Input Clock Prescale Select bits
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value 00 = 1:1 prescale value
bit 3	
DILO	Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	_	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	-	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	—	SIDL	IREN	RTSMD	_	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal

bit 14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - 1 = $\overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode

bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess		0									Bits								8
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0200	RTCCON	31:16	_	_	_	-	_	-					CAL<	9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	_	-		_	RTSECSEL	RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210		31:16	—	_	_	—	_	-		_	—	_	_	_	—	_	—	—	0000
0210		15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASK<3:0> ARPT<7:0>						0000					
0220	3	31:16		HR10	0<3:0>		HR01<3:0>				MIN10<	3:0>			MIN01	<3:0>		xxxx	
0220		15:0		SEC1	0<3:0>		SEC01<3:0>						_				xx00		
0230	RTCDATE	31:16		YEAR	10<3:0>		YEAR01<3:0>			MONTH10<3:0>			MONTH01<3:0>				xxxx		
0230	RIODAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	_	_	_		WDAY0	1<3:0>		xx00
0240		31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240	240 ALRMTIME	15:0		SEC1	0<3:0>			SEC07	1<3:0>		—	_	_	_	_	—	—	—	xx00
0250	250 ALRMDATE	31:16	—	_	_	_	—	—	_	_		MONTH10	<3:0>			MONTH	01<3:0>		00xx
0200		15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	_	_	_		WDAY0	1<3:0>		xx0x

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

ess		0		Bits											ŝ				
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	31:16 15:0		ADC Result Word A (ADC1BUFA<31:0>) 0000 0000															
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>) 0000 0000															
9130	ADC1BUFC	31:16 15:0							ADC Res	ult Word C	(ADC1BUF	C<31:0>)							0000
9140	ADC1BUFD	31:16 15:0							ADC Res	ult Word D	(ADC1BUF	D<31:0>)							0000
9150	ADC1BUFE	31:16 15:0	ADC Result Word E (ADC1BUFE<31:0>)																
9160	ADC1BUFF	31:16 15:0																	

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details.

26.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

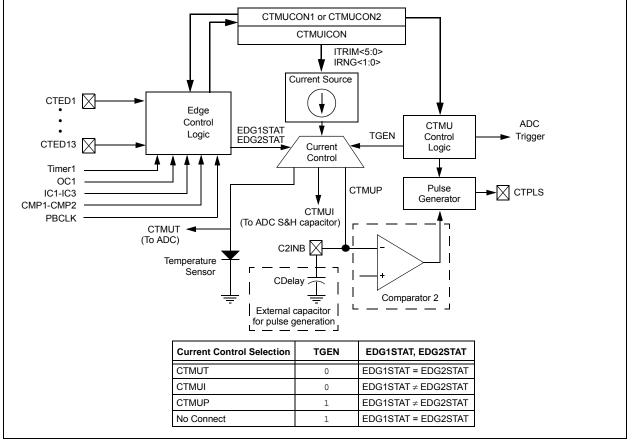

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

FIGURE 26-1: CTMU BLOCK DIAGRAM

The CTMU module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 26-1.

27.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. " Power- Saving Features " (DS60001130), which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microphin PIC22 work arite
	(www.microchip.com/pic32).

This section describes power-saving features for the PIC32MX330/350/370/430/450/470 family of devices. These PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

27.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

27.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock

running.

• Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

27.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

27.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is Halted.
- The system clock source is typically shutdown. See Section 27.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
R	R	R	R	R	R	R	R				
	VER<	:3:0> ⁽¹⁾			DEVID<27	7:24> ⁽¹⁾					
R	R	R	R	R R R							
DEVID<23:16> ⁽¹⁾											
R	R	R	R	R	R	R	R				
			DEVID<	15:8> (1)							
R	R	R	R	R	R	R	R				
DEVID<7:0>(1)											
	31/23/15/7 R R R	31/23/15/7 30/22/14/6 R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 R R R VER<3:0>(1) R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 R R R R R R R R R R R R R R R R R R R R R R R R R R R DEVID<2	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 R R R R R VER<3:0> ⁽¹⁾ VER<2:0> ⁽¹⁾ VER<2:0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 R R R R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ R R R R R R R R R R R R DEVID<23:16> ⁽¹⁾ DEVID<23:16> ⁽¹⁾ DEVID<15:8> ⁽¹⁾ R R R R R R R R R R R R R R R R R R R				

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

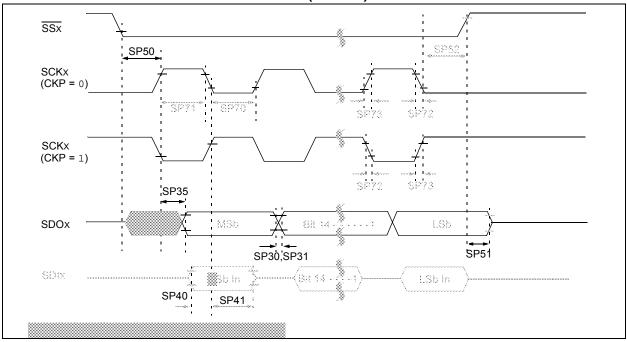
Logona.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

TABLE 31-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS


DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for Commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments		
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.	_		10	μs	See Note 1		
D313	DACREFH	CVREF Input Voltage Reference Range	AVss		AVDD	V	CVRSRC with CVRSS = 0		
			VREF-		VREF+	V	CVRSRC with CVRSS = 1		
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size		
			0.25 x DACREFH	—	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/ 32 step size		
D315	DACRES	Resolution	_	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>		
			—		DACREFH/32		CVRCON <cvrr> = 0</cvrr>		
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>		
			_		1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>		

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 31-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments	
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (3 ohm). Typical voltage on the VCAP pin is 1.8V.	

FIGURE 31-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TERISTICS Standard Opera Operating tempe		wise sta				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2		_	ns		
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2		_	ns	—	
SP72	TscF	SCKx Input Fall Time	—		_	ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	—		_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31	
SP35		SDOx Data Output Valid after	—		15	ns	VDD > 2.7V	
	TscL2DoV	SCKx Edge	_		20	ns	VDD < 2.7V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_	
SP41	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	175		_	ns	_	
SP51		SSx ↑ to SDOx Output High-Impedance (Note 3)	5		25	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS ⁽⁵⁾			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-					
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)		
AD21d	INL	Integral Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD22d	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)		
AD23d	Gerr	Gain Error	> -4	_	< 4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD24d	Eoff	Offset Error	> -2	_	< 2	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD25d	_	Monotonicity	—	—	_	—	Guaranteed		
Dynami	c Performa	ince	•	•		•	•		
AD31b	SINAD	Signal to Noise and Distortion	55	58	—	dB	(Notes 3,4)		
AD34b	ENOB	Effective Number of Bits	9	9.5	_	bits	(Notes 3,4)		

TABLE 31-35: ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.