

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx330f064ht-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS50001765
- "MPLAB[®] ICD 3 Design Advisory" DS50001764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS50001616
- *"Using MPLAB[®] REAL ICE™ Emulator"* (poster) DS50001749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 Trace

The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R	R	R	R	R	R	R	R		
31:24		BMXDRMSZ<31:24>								
22:16	R	R	R	R	R	R	R	R		
23.10	BMXDRMSZ<23:16>									
45.0	R	R	R	R	R	R	R	R		
15:8	BMXDRMSZ<15:8>									
7:0	R	R	R	R	R	R	R	R		
				BMXDR	MSZ<7:0>					

BMXDRMSZ: DATA RAM SIZE REGISTER **REGISTER 4-5:**

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM 0x00020000 = Device has 128 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	—	_	—	BMXPUPBA<19:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
15:8	BMXPUPBA<15:8>							
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				BMXPU	PBA<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits Value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23:10	—	—	—	—	—	—	—	SS0
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	MVEC	—	TPC<2:0>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

Logonal					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-17 Unimplemented: Read as '0'

- bit 16 **SS0:** Single Vector Shadow Register Set bit
 - 1 = Single vector is presented with a shadow register set
 - 0 = Single vector is not presented with a shadow register set

bit 15-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
 - 1 = Interrupt controller configured for multi vectored mode
 - 0 = Interrupt controller configured for single vectored mode

bit 11 Unimplemented: Read as '0'

- bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
 - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
 - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
 - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
 - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer 000 = Disables Interrupt Proximity timer
- bit 7-5 **Unimplemented:** Read as '0'
- bit 4 **INT4EP:** External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
23.10	CHAIRQ<7:0> ⁽¹⁾								
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
10.0	CHSIRQ<7:0> ⁽¹⁾								
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_	

REGISTER 10-8 DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

011 31-24	Unimplemented. Read as 0
bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	• 00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
	00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	1 = Start channel cell transfer if an interrunt matching CHSIRO occurs

- Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	LSPDEN			D	EVADDR<6:0)>		

REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER

Legend:

•					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

bit 7 **LSPDEN:** Low Speed Enable Indicator bit

1 = Next token command to be executed at Low Speed

0 = Next token command to be executed at Full Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—		—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	—	—	—	—	—		—			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7.0				FRML	<7:0>						

REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

TABLE 12-2. UUTP			
RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX
RPF4	RPF4R	RPF4R<3:0>	- 0010 = U4RIS
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5	RPB5R	RPB5R<3:0>	1010 = Reserved
RPC1 ⁽⁴⁾	RPC1R	RPC1R<3:0>	1011 = OC3
RPD14 ⁽⁴⁾	RPD14R	RPD14R<3:0>	1100 = Reserved
RPG1 ⁽⁴⁾	RPG1R	RPG1R<3:0>	1110 = Reserved
RPA14 ⁽⁴⁾	RPA14R	RPA14R<3:0>	1111 = Reserved
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved
RPD11	RPD11R	RPD11R<3:0>	-0011 = U1TX
RPF0	RPF0R	RPF0R<3:0>	-0100 = OSRIS()
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved
RPF3 ⁽²⁾	RPF3R	RPF3R<3:0>	1010 = Reserved
RPC4 ⁽⁴⁾	RPC4R	RPC4R<3:0>	$\frac{1100}{1100} = \text{Reserved}$
RPD15 ⁽⁴⁾	RPD15R	RPD15R<3:0>	1101 = Reserved
RPG0 ⁽⁴⁾	RPG0R	RPG0R<3:0>	1110 = Reserved
RPA15 ⁽⁴⁾	RPA15R	RPA15R<3:0>	1111 = Reserved

TABLE 12-2: OUTPUT PIN SELECTION

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

TABLE 12-6: PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess		6		Bits															
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_	_	—	_		—	_		_			_	_	_			0000
0210	TRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	—	—	—	_	_	_	_	—	_	_	xxxx
6220	PORTO	31:16	_	_	_	_	_	—	_	—	_	_	_	_	_	_	_	—	0000
0220	TORIC	15:0	RC15	RC14	RC13	RC12	_	—	_	—	—		_	_	_	—		—	xxxx
6230	LATC	31:16	—	_	_	_	_	—	_	—	—		_	_	_	—		—	0000
0200	LATO	15:0	LATC15	LATC14	LATC13	LATC12	_	—	—	—	—	—	—	—	—	—	—	—	xxxx
6240	ODCC	31:16	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_	—	0000
02.0	0200	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	_	—	—	_	—	—	—	—	_	_	xxxx
6250	CNPUC	31:16	_	_	—	_		—	_		_					_			0000
		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	_		—	—	—	—		—	XXXX
6260	CNPDC	31:16	_	_		_	—	—	—	—	_	—	—	—	—	_	—	—	0000
		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	_	—	_	_	_	—	—	_	_	—	XXXX
6270	CNCONC	31:16	_			—	—	—	_		—	_	—	—	—	—	_	_	0000
		15:0	ON		SIDL	—	—	—	_		—	_	—	—	—	—	_	_	0000
6280	CNENC	31:16					—	—	_		—	_	—	—	—	—	_	_	0000
		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	—	_		_	_	—	—	—	_	_	_	XXXX
6290	CNSTATC	31:16	_	—	_	_	—	—	_		_	_	—	—	—	_	_	_	0000
	-	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	—	—	—	—	—	—	—	—	—	—	—	—	XXXX

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)⁽¹⁾

NOTES:

18.1 Control Registers

TABLE 18-1: SPI2 AND SPI2 REGISTER MAP

ess				Bits															
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5800	SDI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:0)>	MCLKSEL				—	—	SPIFE	ENHBUF	0000
3800	SFILCON	15:0	ON	-	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5040	CDI1CTAT	31:16	_	—	—		RXE	BUFELM<4:	:0>		—	_	_		TX	BUFELM<4	:0>		0000
5810	SFIISTAI	15:0	_	—	—	FRMERR	SPIBUSY	—	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	19EE
5000		31:16									21:05								0000
5820	SPIIBUF	15:0								DATAS	SI.0>								0000
5000		31:16	_	_	—	_	_	—	_	—	—	—	—	_	—	_	_	—	0000
5830	SPIIBRG	15:0	_	_	_	—	BRG<8:0>							0000					
		31:16	_	_	_	—	_	_	_	_	—	—	—	_	—	_	_	—	0000
5840	SPI1CON2	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	—	AUD MONO	_	AUDMO)D<1:0>	0000
		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:0)>	MCLKSEL	—	_	-	_	_	SPIFE	ENHBUF	0000
5A00	SPIZCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	L<1:0>	0000
		31:16	_	_	_		RXE	BUFELM<4:	:0>		_	_	_		TX	BUFELM<4	:0>		0000
5A10	SPIZSTAT	15:0	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE		SPITBE	_	SPITBF	SPIRBF	19EE
		31:16																	0000
5A20	SPIZBUF	15:0								DATAS	SI.0>								0000
5400		31:16	_	-	_	_	-	_	_	_	-	-	_	_	-	_	_	_	0000
5A30	SPIZBRG	15:0	_	_	_	—	_	_	_					BRG<8:0>					0000
		31:16		_	_	_	_	_	_	_	_	—	_		_	_	_	_	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	_	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	—	AUD MONO	_	AUDMO)D<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTE	R 19-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
31:24	—	—	—	—	—	—	—	ADM_EN				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	ADDR<7:0>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1				
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT				
7:0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0				
	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA				

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

zogonai			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.

bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)

- 1 = Transmit buffer is full
- 0 = Transmit buffer is not full, at least one more character can be written

'0' = Bit is cleared

x = Bit is unknown

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10	<3:0>		HR01<3:0>					
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MIN10	<3:0>		MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10)<3:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	—	_	—	_	—	_	—	—		
Legend:										
R = Read	lable bit		W = Writable	e bit	U = Unimplemented bit, read as '0'					

REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

'1' = Bit is set

-n = Value at POR

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

ess		ø								Bi	ts								s
Virtual Addr (BF80_#)	Register Name 19 31		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
9110	ADC1BUFA	31:16		ADC Result Word A (ADC1BUFA<31:0>)															
		15:0		0000															
9120	ADC1BUEB	31:16		ADC Result Word B (ADC1BUER<31:0>)															
0120	10010010	15:0							71201100		(/ 1201201	B (01.0)							0000
0400		31:16										0.01.0.)							0000
9130	ADCIBUFC	15:0							ADC Res	uit vvora C	(ADC IBUF	C<31:0>)							0000
0140		31:16										D (01.0)							0000
9140	ADCIBUED	15:0		ADC Result Word D (ADC1BUFD<31:0>)															
		31:16		0000															
9150	ADC1BUFE	15:0	ADU Result Word E (ADU1BUFE<31:0>)																
		31:16	0000																
9160	ADC1BUFF	15:0	ADC Result Word F (ADC1BUFF<31:0>)																

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	—	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CSSL23	CSSL21	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

REGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-0 CSSL<30:0>: ADC Input Pin Scan Selection bits^(1,2)
 - 1 = Select ANx for input scan
 - 0 = Skip ANx for input scan
- **Note 1:** CSSL = ANx, where x = 0-27; CSSL30 selects Vss for scan; CSSL29 selects CTMU input for scan; CSSL28 selects IVREF for scan.
 - 2: On devices with less than 28 analog inputs, all CSSLx bits can be selected; however, inputs selected for scan without a corresponding input on the device will convert to VREFL.

TABLE 28-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess		Bit Range	Bits														ú		
Virtual Addr (BFC0_#)	Register Name		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2550	DEVCFG3	31:16	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	—	_	-	_	_	_	_	—	FS	SRSSEL<2:	0>	xxxx
2660		15:0	USERID<15:0> xxx													xxxx			
2554		31:16		-	_	—	—	—					—		_	FP	LLODIV<2:	0>	xxxx
2664	DEVCFG2	15:0	UPLLEN ⁽¹⁾	-	—	—	—	UPI	LIDIV<2:0>	(1)	-	FF	PLLMUL<2:	0>	—	FF	PLLIDIV<2:()>	xxxx
2550		31:16			_	_	—	_	FWDTWI	NSZ<1:0>	FWDTEN	WINDIS	—		١	WDTPS<4:()>		xxxx
2660	DEVCEGI	15:0	FCKSM	<1:0>	FPBD	IV<1:0>	—	OSCIOFNC	POSCM	OD<1:0>	IESO	-	FSOSCEN		—	F	NOSC<2:0	>	xxxx
2550		31:16	_	—	_	CP	_	—	—	BWP	—	—	—	—		PWP<7:4>			xxxx
ZEEC	DEVCFGU	15:0		PWP<	<3:0>		_	_				-	_	ICESE	L<1:0>	JTAGEN	DEBU	G<1:0>	xxxx

Legend: x = unknown value on Reset; - = reserved, write as '1'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

TABLE 28-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

ess		6								Bi	ts								
Virtual Addr (BF80 #)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5000		31:16	—	—	—	_	_	_	—	_	—	—	_	_	_	_	_	_	0000
FZUU	CFGCON	15:0	—	—	IOLOCK	PMDLOCK	. —	_	—		_	—	—	-	JTAGEN	TROEN		TDOEN	000B
E00(31:16	3 VER<3:0> DEVID<27:16>									xxxx ⁽¹⁾							
FZZU) DEVID	15:0	DEVID<15:0> xx									xxxx ⁽¹⁾							
EDD	SVSKEV	31:16								SVSKE	V<31.0>								0000
FZOU) STOKET	15:0								STORE	1~51.0~								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

FIGURE 31-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 31-30: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—	_	ns	—			
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	—			
SP20	TscF	SCKx Output Fall Time (Note 4)	—	_		ns	See parameter DO32			
SP21	TscR	SCKx Output Rise Time (Note 4)	—		_	ns	See parameter DO32			
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_		ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—		ns	See parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid after SCKx Edge	—	_	15	ns	VDD > 2.7V			
	TscL2doV		—		20	ns	VDD < 2.7V			
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	15	—		ns	_			
SP40	TDIV2scH,	Setup Time of SDIx Data Input to	15	—		ns	VDD > 2.7V			
	TDIV2scL	SCKx Edge	20	—	_	ns	VDD < 2.7V			
SP41	TscH2DIL,	Hold Time of SDIx Data Input	15	_	_	ns	VDD > 2.7V			
	TscL2DIL	to SCKx Edge	20	_	_	ns	VDD < 2.7V			

Note 1: These parameters are characterized, but not tested in manufacturing.

- Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only 2: and are not tested.
- The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not 3: violate this specification.
- Assumes 50 pF load on all SPIx pins. 4:

AC CHA		STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercia} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation			
USB315	VILUSB	Input Low Voltage for USB Buffer	_		0.8	V	—			
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0		—	V	—			
USB318	Vdifs	Differential Input Sensitivity	_	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met			
USB319	VCM	Differential Common Mode Range	0.8		2.5	V	—			
USB320	Zout	Driver Output Impedance	28.0		44.0	Ω	—			
USB321	Vol	Voltage Output Low	0.0		0.3	V	1.425 kΩ load connected to VUSB3V3			
USB322	Vон	Voltage Output High	2.8	_	3.6	V	14.25 k Ω load connected to ground			

TABLE 31-41: OTG ELECTRICAL SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PIC32 MX 3XX F 064 H B T - XXX I/PT - XXX Example: Microchip Brand PiC32 MX 3XX F 064 H B T - XXX I/PT - XXX Architecture PiC32 MX 330F064H-I/PT: Architecture PiC32 MX 30 F 064 H B T - XXX I/PT - XXX Product Groups PiC32 MX 30 F 064 H B T - XXX I/PT - XXX Product Groups Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Product Groups Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Flash Memory Family Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Program Memory Size (KB) Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Pin Count Pin Count Software Targeting Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Speed Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Package Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Package Pic32 MX 30 F 064 H B T - XXX I/PT - XXX Pattern Pic32 M S - XX							
Flash Memory Far	nily						
Architecture	MX = 32-bit RISC MCU core						
Product Groups	3XX = General purpose microcontroller family 4XX = General purpose with USB microcontroller family						
Flash Memory Family	F = Flash program memory						
Program Memory Size	064 = 6 4KB 128 = 128KB 256 = 256KB 512 = 512KB						
Pin Count	H = 64-pin L = 100-pin						
Software Targeting	B = Targeted for Bluetooth Audio Break-in devices						
Speed	blank = up to 100 MHz 120 = up to 120 MHz						
Temperature Range	blank = 0°C to +70°C (Commercial) I = -40°C to +85°C (Industrial) V = -40°C to +105°C (V-Temp)						
Package	MR = 64-Lead (9x9x0.9 mm) QFN with 5.40x5.40 Exposed Pad (Plastic Quad Flat) RG = 64-Lead (9x9x0.9 mm) QFN with 4.7x4.7 Exposed Pad (Plastic Quad Flat) PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array)						
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample						