

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx330f064ht-i-rg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4,5)	,				A	34
	, Α17			B13	B29		Conductive Thermal Pad
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L		A1	B1 E	356	B41	A51
	Polarity	ndica	tor	Å	\68		
Package Bump #	Full Pin Name		Package Bump #			Full Pin	Name
B7	MCLR		B32	SDA2	/RA3		
B8	Vss		B33	TDO/F	RA5		
B9	TMS/CTED1/RA0		B34	OSC1	/CLKI/RC12		
B10	RPE9/RE9		B35	No Co	onnect		
B11	AN4/C1INB/RB4		B36	RPA1	4/RA14		
B12	Vss		B37	RPD8	/RTCC/RD8		
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD1	0/PMCS2/RE	010	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0	/RD0		
B15	No Connect		B40	SOSC	O/RPC14/T1	CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss			
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/	RPD2/RD2		
B18	AVss		B43	RPD1	2/PMD12/RD)12	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4	/PMWR/RD4		
B20	AN11/PMA12/RB11		B45	PMD1	4/RD6		
B21	VDD		B46	No Co	onnect		
B22	RPF13/RF13		B47	No Co	onnect		
B23	AN12/PMA11/RB12		B48	VCAP			
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0	/PMD11/RF0		
B25	Vss		B50	RPG1	/PMD9/RG1		
B26	RPD14/RD14		B51	TRCL	K/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0)/RE0		
B28	No Connect]	B53	Vdd			
B29	RPF8/RF8		B54	TRD2	/RG14		
B30	RPF6/SCKI/INT0/RF6		B55	TRD0	/RG13		
B31	SCL1/RG2		B56	RPE3	/CTPLS/PMD	03/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (bump B30) and RPF7 (bump A37) are only remappable for input functions.

4: Shaded package bumps are 5V tolerant.

5: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	7				A3	34
	AL	I		B13	B29		Conductive Thermal Pad
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L		A1	B1 B	56	B41	A51
	Polarity	Indica	tor	A	68		
Package Bump #	Full Pin Name		Package Bump #			Full Pin	Name
B7	MCLR		B32	SDA2	/RA3		
B8	Vss		B33	TDO/F	RA5		
B9	TMS/CTED1/RA0		B34	OSC1	/CLKI/RC12		
B10	RPE9/RE9		B35	No Co	onnect		
B11	AN4/C1INB/RB4		B36	SCL1/	RPA14/RA1	4	
B12	Vss		B37	RPD8	/RTCC/RD8		
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD1	0/SCK1/PM0	CS2/RD10	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0	/INT0/RD0		
B15	No Connect		B40	SOSC	O/RPC14/T	1CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss			
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/	RPD2/RD2		
B18	AVss		B43	RPD1	2/PMD12/RI	012	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4	/PMWR/RD4	ļ	
B20	AN11/PMA12/RB11		B45	PMD1	4/RD6		
B21	VDD		B46	No Co	onnect		
B22	RPF13/RF13		B47	No Co	onnect		
B23	AN12/PMA11/RB12		B48	VCAP			
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0/	PMD11/RF0		
B25	Vss		B50	RPG1	/PMD9/RG1		
B26	RPD14/RD14		B51	TRCL	K/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0	/RE0		
B28	No Connect		B53	Vdd			
B29	RPF8/RF8		B54	TRD2	/RG14		
B30	VUSB3V3		B55	TRD0	/RG13		
B31	D+		B56	RPE3	CTPLS/PMI	D3/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

7.1 Interrupts Control Registers

TABLE 7-2: INTERRUPT REGISTER MAP

ess										Bits									
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000		31:16	_		—		—				—	—	_	—			—	SS0	0000
1000	INTCON	15:0	_	_	_	MVEC	—		TPC<2:0>		—	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT	31:16	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_	0000
1010		15:0	—	—	—	—	—		SRIPL<2:0>		—	—			VEC<5:0)>			0000
1020	IPTMR	31:16 15:0								IPTMR<3	31:0>								0000
1000	1500	31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
1030	IF50	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1040	IES1	31:16	U3RXIF	U3EIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	CNGIF	CNFIF	CNEIF	0000
1040	IF31	15:0	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP2IF	CMP1IF	0000
1050	IES2	31:16	_	-	—	-	—				—	—	—	—			_	_	0000
1050	11 02	15:0	_	_	—	_	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	U5TXIF ⁽¹⁾	U5RXIF ⁽¹⁾	U5EIF ⁽¹⁾	U4TXIF	U4RXIF	U4EIF	U3TXIF	0000
1060	IEC0	31:16	FCEIE	RTCCIE	FSCMIE	AD1IE	OC5IE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000
	1200	15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
1070	IEC1	31:16	U3RXIE	U3EIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	CNGIE	CNFIE	CNEIE	0000
		15:0	CNDIE	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1TXIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP2IE	CMP1IE	0000
1080	IEC2	31:16		_	—	_	—	—	—	—	—					—			0000
		15:0		_		_	DMA3IE	DMA2IE	DMA1IE	DMAOIE	CTMUIE	U5TXIE()	U5RXIE ⁽¹⁾	USEIE	U4TXIE	U4RXIE	U4EIE	U3TXIE	0000
1090	IPC0	31:16		_			INT0IP<2:0>		INTOIS	<1:0>			_	C	S1IP<2:0>		CS1IS	S<1:0>	0000
		15:0	_				CSUIP<2:0>			<1:0>		_		(-11P<2:0>		00115	<1:0>	0000
10A0	IPC1	31.10								<1.0>				-				~1.0>	0000
		31.16								<1.0>	_			0	0210-2:0-		00215	<1.0×	0000
10B0	IPC2	15.0					IC2IP<2:0>		101213	<1.0>				UC2IP<2:0>			T215	<1.0>	0000
		31.16					INT3IP<2:0>		INTSIS	<1:0>				0	C3IP<2.02		00315	<1:02 <1:02	0000
10C0	IPC3	15.0			_		INT3IP<2:0>		IC3IS	<1:0>	_	_	_	-	T3IP<2:0>		T3IS	<1:0>	0000
		31:16		_			IC3IP<2:0>		INT4IS	<1:0>	_	_	_	0	C4IP<2:0>	0> 0C4IS<1:0>		S<1:0>	0000
10D0	IPC4	15:0	_	_	_		IN 14IP<2:0>		IC4IS	<1:0>	_	_	_	T4IP<2:0>		P<2:0> T4IS<1:0>		<1:0>	0000
		31:16	_	_	_		AD1IP<2:0>		AD1IS	S<1:0> OC5IP<2:0>		OC5IP<2:0>		OC5IS	6<1:0>	0000			
10E0	IPC5	15:0	—	_	—		IC5IP<2:0>		IC5IS•	<1:0>	—	_	_	1	T5IP<2:0>		T5IS-	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	—	—	—		IP3<2:0>		IS3<	:1:0>
22:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—		IP2<2:0>		IS2<	:1:0>
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	—	—	—		IP1<2:0>		IS1<	:1:0>
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_		IP0<2:0>		IS0<	:1:0>

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP

ess		é								Bi	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3060		31:16			_	—		_	_				_	_		_			0000
3000	DCHOCON	15:0	CHBUSY	—	—		_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
3070	DCH0ECON	31:16	—	_	—	—	—	—		_			1	CHAIR	Q<7:0>				00FF
		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	_	—	FFF8
3080	DCH0INT	31:16	—	_	—	—	—	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	—	_	_	-	_	_		_	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCH0SSA	31:16								CHSSA	<31:0>								0000
		15:0																	0000
30A0	DCH0DSA	31.10 15:0								CHDSA	<31:0>								0000
		31:16	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	0000
30B0	DCH0SSIZ	15:0								CHSSIZ	Z<15:0>								0000
		31:16	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	0000
30C0	DCH0DSIZ	15:0								CHDSIZ	Z<15:0>								0000
0000		31:16	_	_	—	_	—	—	—		—	—	—	—	_	_	—	_	0000
30D0	DCHUSPIR	15:0				•				CHSPTI	R<15:0>								0000
2050		31:16	_	_	_	-	_	_	_	_	—	—	_	_	_	—	—	—	0000
30E0	DCHUDPIR	15:0								CHDPTI	R<15:0>								0000
30E0		31:16	_	—	-	_		_	_	—			_	_	_			_	0000
501.0	DOI 100012	15:0								CHCSIZ	Z<15:0>								0000
3100	DCH0CPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0100		15:0								CHCPTI	R<15:0>								0000
3110	DCH0DAT	31:16	—	_			_			—	—	_	—	—	_	—	—	—	0000
		15:0	—	_	—	_	_	—	—					CHPDA	\T<7:0>	-			0000
3120	DCH1CON	31:16	-	_	—		_	_	_	-	-	—	—	—	_	-	-	—	0000
		15:0	CHBUSY	_	—		_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	1<1:0>	0000
3130	DCH1ECON	31:16	—	_	—		-	—			050005	CARODT	DATEN		Q<7:0>				OOFF
		15:0				CHSIR	Q<7:0>				CFURCE	CABORT		SIRQEN					F.F.F.8
3140	DCH1INT	31.10								_	CHODIE	CHONIE							0000
	-	15.0																	
3150	DCH1SSA	15.0								CHSSA	<31:0>								0000
		31.16																	0000
3160	DCH1DSA	DSA 15:0 CHDSA<31:0>					0000												
Ļ																			

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	—	—	—	—	_	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN		CHEDET	CHPF	RI<1:0>

REGISTER 10-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14-9 Unimplemented: Read as '0'
- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

- 1 = Channel start/abort events will be registered, even if the channel is disabled
- 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allow channel to be chained
- 0 = Do not allow channel to be chained
- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	_	_	_
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	_	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled
1.11.00	
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled
h:+ 40	0 = Interrupt is disabled
DIT 19	
	0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled
bit 16	0 – Interrupt is disabled
DIL TO	
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	 1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2) 0 = No interrupt is pending
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ
	0 = No interrupt is pending
© 2012-204	16 Microchin Technology Inc
~ <u>~</u> ~ ~ ~ ~ ~ ~ U	

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—		—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—		—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	-	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
1.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE

REGISTER 11-2: U10TGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt is enabled
 - 0 = 1 millisecond timer interrupt is disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt is enabled
 - 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt is enabled
 - 0 = ACTIVITY interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt is enabled
 - 0 = B-session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt is enabled
 - 0 = A-VBUS valid interrupt is disabled

12.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

12.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

12.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

12.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

REGISTER 12-3:	CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER ($x = A - G$)
----------------	--

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	—	—		_	_	_	-	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = CPU Idle Mode halts CN operation
 - 0 = CPU Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 17-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit⁽¹⁾
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 OC32: 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisions to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 OCTSEL: Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for this Output Compare module
 - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin is enabled
 - 110 = PWM mode on OCx; Fault pin is disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

REGISTER 18-3: SPIxSTAT: SPI STATUS REGISTER (CONTINUED)

- bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB is empty
 - 0 = Transmit buffer, SPIxTXB is not empty

Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.

Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

bit 2 Unimplemented: Read as '0'

bit 1 SPITBF: SPI Transmit Buffer Full Status bit

1 = Transmit not yet started, SPITXB is full

0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

bit 0 SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

PIC32MX330/350/370/430/450/470

FIGURE 19-1: I²C BLOCK DIAGRAM

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	IREN	RTSMD	—	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

Legend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal

bit 14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - 1 = $\overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode

bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

20.2 Timing Diagrams

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾				<12:05			
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾		ADDR<13:8>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				ADDR	<7:0>				

REGISTER 21-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 ADDR<15>: Destination Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Destination Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P
23:10	—	—	—	—	—	FPLLODIV<2:0>		
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P
15:8	UPLLEN ⁽¹⁾	—	—	—	—	UF	PLLIDIV<2:0>	.(1)
7.0	r-1	R/P-1	R/P	R/P-1	r-1	R/P	R/P	R/P
7:0	—	F	PLLMUL<2:0	>	—	F	PLLIDIV<2:0	>

DEVCFG2: DEVICE CONFIGURATION WORD 2 REGISTER 28-3:

Legend:	r = Reserved bit	P = Programmable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-19 Reserved: Write '1'

bit 15

bit 7

bit 18-16 FPLLODIV<2:0>: Default PLL Output Divisor bits

- 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 UPLLEN: USB PLL Enable bit⁽¹⁾ 1 = Disable and bypass USB PLL 0 = Enable USB PLL bit 14-11 Reserved: Write '1' bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits⁽¹⁾ 111 = 12x divider 110 = 10x divider 101 = 6x divider100 = 5x divider 011 = 4x divider 010 = 3x divider 001 = 2x divider 000 = 1x dividerReserved: Write '1' bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier 011 = 18x multiplier 010 = 17x multiplier 001 = 16x multiplier 000 = 15x multiplier
- bit 3 Reserved: Write '1'

Note 1: This bit is available on PIC32MX4XX devices only.

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX330/350/370/430/450/470 AC characteristics and timing parameters.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS		$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
DO50	Cosco	OSC2 pin	_	_	15	pF	In XT and HS modes when an external crystal is used to drive OSC1	
DO56	Сю	All I/O pins and OSC2	_		50	pF	EC mode	
DO58	Св	SCLx, SDAx	—		400	pF	In I ² C mode	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-2: EXTERNAL CLOCK TIMING

PIC32MX330/350/370/430/450/470

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B