

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx330f064ht-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

		Pin Numb	er			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
U1CTS	PPS	PPS	PPS	I	ST	UART1 Clear to Send
U1RTS	PPS	PPS	PPS	0	_	UART1 Ready to Send
U1RX	PPS	PPS	PPS	I	ST	UART1 Receive
U1TX	PPS	PPS	PPS	0	_	UART1 Transmit
U2CTS	PPS	PPS	PPS	Ι	ST	UART2 Clear to Send
U2RTS	PPS	PPS	PPS	0	—	UART2 Ready to Send
U2RX	PPS	PPS	PPS	I	ST	UART2 Receive
U2TX	PPS	PPS	PPS	0	_	UART2 Transmit
U3CTS	PPS	PPS	PPS	Ι	ST	UART3 Clear to Send
U 3RTS	PPS	PPS	PPS	0	_	UART3 Ready to Send
U3RX	PPS	PPS	PPS	I	ST	UART3 Receive
U3TX	PPS	PPS	PPS	0	_	UART3 Transmit
U4CTS	PPS	PPS	PPS	Ι	ST	UART4 Clear to Send
U4RTS	PPS	PPS	PPS	0	_	UART4 Ready to Send
U4RX	PPS	PPS	PPS	I	ST	UART4 Receive
U4TX	PPS	PPS	PPS	0	_	UART4 Transmit
U5CTS ⁽³⁾	—	PPS	PPS	Ι	ST	UART5 Clear to Send
U5RTS ⁽³⁾	_	PPS	PPS	0	_	UART5 Ready to Send
U5RX ⁽³⁾	—	PPS	PPS	I	ST	UART5 Receive
U5TX ⁽³⁾	—	PPS	PPS	0	—	UART5 Transmit
SCK1	35 ⁽¹⁾ , 50 ⁽²⁾	55 ⁽¹⁾ , 70 ⁽²⁾	B30 ⁽¹⁾ , B38 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for SPI1
SDI1	PPS	PPS	PPS	0	_	SPI1 Data In
SDO1	PPS	PPS	PPS	I/O	ST	SPI1 Data Out
SS1	PPS	PPS	PPS	I/O	—	SPI1 Slave Synchronization for Frame Pulse I/O
SCK2	4	10	A7	I/O	ST	Synchronous Serial Clock Input/Output for SPI2
SDI2	PPS	PPS	PPS	0	_	SPI2 Data In
SDO2	PPS	PPS	PPS	I/O	ST	SPI2 Data Out
SS2	PPS	PPS	PPS	I/O	—	SPI2 Slave Synchronization for Frame Pulse I/O
SCL1	37 ⁽¹⁾ , 44 ⁽²⁾	57 ⁽¹⁾ , 66 ⁽²⁾	B31 ⁽¹⁾ , B36 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for I2C1
SDA1	36 ⁽¹⁾ , 43 ⁽²⁾	56 ⁽¹⁾ , 67 ⁽²⁾	A38 ⁽¹⁾ , A44 ⁽²⁾	I/O	ST	Synchronous Serial Data Input/Output for I2C1
SCL2	32	58	A39	I/O	ST	Synchronous Serial Clock Input/Output for I2C2
SDA2	31	59	B32	I/O	ST	Synchronous Serial Data Input/Output for I2C2
TMS	23	17	B9	Ι	ST	JTAG Test Mode Select Pin
ТСК	27	38	A26	Ι	ST	JTAG Test Clock Input Pin
TDI	28	60	A40	Ι		JTAG Test Clock Input Pin
TDO	24	61	B33	0		JTAG Test Clock Output Pin
RTCC	42	68	B37	0		Real-Time Clock Alarm Output
Leaend:	CMOS = CN	AOS compa	tible input or ou	tput	An	alog = Analog input P = Power

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24	CHEW1<31:24>										
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:10	CHEW1<23:16>										
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15.0	CHEW1<15:8>										
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0				CHEW1	<7:0>						

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31.24	CHEW2<31:24>										
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23.10	CHEW2<23:16>										
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15.0	CHEW2<15:8>										
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0				CHEW2	<7:0>						

Legend:					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

'1' = Bit is set

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24				CHEPFAB	T<31:24>						
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16	CHEPFABT<23:16>										
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8	CHEPFABT<15:8>										
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0	CHEPFABT<7:0>										
k	1										
Legend	:										
R = Rea	dable bit		W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'				

REGISTER 9-12: CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER

bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits

-n = Value at POR

Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store.

'0' = Bit is cleared

x = Bit is unknown

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP

ess		é								Bi	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3060		31:16			_	—		_	_				_	_		_			0000
3000	DCHOCON	15:0	CHBUSY	—	—		_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
3070	DCH0ECON	31:16	—	_	—	—	—	—		_			1	CHAIR	Q<7:0>				00FF
		15:0	CHSIRQ<7:0>								CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	_	—	FFF8
3080	DCH0INT	31:16	—	_	—	—	—	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	—	_	_	—	_	_		_	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCH0SSA	31:16								CHSSA	<31:0>								0000
		15:0																	0000
30A0	DCH0DSA	31.10 15:0								CHDSA	<31:0>								0000
		31:16	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	0000
30B0	DCH0SSIZ	10SSIZ 15:0>						0000											
		31:16	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	0000
30C0	DCH0DSIZ	DCH0DSIZ 15:0 CHDSIZ<15:0>							0000										
0000		31:16	_	_	—	_	—	—	—		—	—	—	—	_	_	—	_	0000
30D0	DCHUSPIR	15:0				•				CHSPTI	R<15:0>								0000
2050		31:16	_	_	_	-	_	_	_	_	—	—	_	_	_	—	—	—	0000
30E0	DCHUDPIR	15:0								CHDPTI	R<15:0>								0000
30E0		31:16	_	—	-	_		_	_	—			_	_	_			_	0000
501.0	DOI 100012	15:0								CHCSIZ	Z<15:0>								0000
3100	DCH0CPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0100		15:0								CHCPTI	R<15:0>								0000
3110	DCH0DAT	31:16	—	_			_			—	—	_	—	—	—	—	—	—	0000
		15:0	—	_	—	_	—	—	—					CHPDA	\T<7:0>	-			0000
3120	DCH1CON	31:16	-	_	—		_	_	_	-	-	—	—	—	_	-	-	—	0000
		15:0	CHBUSY	_	—		_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	1<1:0>	0000
3130	DCH1ECON	31:16	—	_	_		-	—			050005	CARODT	DATEN		Q<7:0>				OOFF
		15:0				CHSIR	Q<7:0>				CFURCE	CABORT		SIRQEN					F.F.F.8
3140	DCH1INT	31.10								_	CHODIE	CHONIE							0000
	-	15.0		_	_	_	_	_	_		CHODIF	Спопіг	CHUDIF	CHDHIF	CHBCIF	CHCCIF	CHIAIF	CHERIF	0000
3150	DCH1SSA	15.0								CHSSA	<31:0>								0000
		31.16																	0000
3160	DCH1DSA	15.0								CHDSA	<31:0>								0000
Ļ			<u> </u>	0000															

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

PIC32MX330/350/370/430/450/470

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	_	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	_	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHSSIZ<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				CHSSIZ	<7:0>					

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHDSIZ<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHDSIZ	<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess		6									Bit	s							
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	LI1EP9	31:16	_					—	—	—	—	-	—	—	-	-	—	_	0000
0000	OTEL 9	15:0		—	—	—	—	—	—	—			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340		31:16		—	—	—	—	—	—	—	—			—	_	_			0000
5570	UTEI 10	15:0	_	_	_	_	_	—	_	_	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53R0		31:16		_	_	_	_	_	_	_	—		_	—			_		0000
5560	OILFII	15:0		—	—	—	—	—		_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5300		31:16		_	_	_	_	_	_	_	—		_	—			_		0000
5500	UILF 12	15:0		—	—	—	—	—		_	—	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5200		31:16	—	_	_	_	_	—	_	-	—	—	_	—	—	—	—	—	0000
55D0	UIEF 13	15:0	—	_	_	_	_	—	_	-	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
53E0	UTEP14	15:0	_					_	_		_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5250		31:16	_					_	_	_	_	_	_	—	_	—	_	_	0000
53FU	UTEP15	15:0									_			EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE

REGISTER 11-2: U10TGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt is enabled
 - 0 = 1 millisecond timer interrupt is disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt is enabled
 - 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt is enabled
 - 0 = ACTIVITY interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt is enabled
 - 0 = B-session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt is enabled
 - 0 = A-VBUS valid interrupt is disabled

FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)⁽¹⁾

15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

NOTES:

REGIS	TER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)						
bit 17	SPIFE: Fr	ame Sync Puls	e Edge Select bit (Framed SPI mode only)						
	1 = Fram	e synchronizati	on pulse coincides with the first bit clock						
1.1.40	0 = Fram	0 = Frame synchronization pulse precedes the first bit clock							
bit 16	ENHBUF:	ENHBUF: Enhanced Buffer Enable bit ⁽²⁾							
	1 = Enhar	1 = Enhanced Buffer mode is enabled							
bit 15		Perinheral On h	it (1)						
bit io	1 = SPI F	Peripheral is ena	abled						
	0 = SPI F	Peripheral is dis	abled						
bit 14	Unimpler	Unimplemented: Read as '0'							
bit 13	SIDL: Sto	p in Idle Mode I	pit						
	1 = Disco	ontinue operatio	n when CPU enters in Idle mode						
	0 = Conti	nue operation i	n Idle mode						
bit 12	DISSDO:	Disable SDOx	pin bit						
	1 = SDO	x pin is not used	a by the module. Pin is controlled by associated PORT register						
bit 11_*	0 = 300	2 16 - 32/16 Bi	t Communication Select hite						
DIL 11-	When AU	DFN = 1:	Communication Select bits						
	MODE32	MODE16	Communication						
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame						
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame						
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame						
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame						
	\A/ban All								
	When AU	$\frac{\text{DEN} = 0}{\text{NODE16}}$	Communication						
	1	WIODETO	32-bit						
	0	1	16-bit						
	0	0	8-bit						
bit 9	SMP: SPI	Data Input Sar	nple Phase bit						
	Master me	ode (MSTEN =	<u>1):</u>						
	1 = Input	data sampled a	at end of data output time						
	Slave mo	de (MSTEN = 0							
	SMP valu	e is ignored wh	en SPI is used in Slave mode. The module always uses SMP = $0.$						
bit 8	CKE: SPI	Clock Edge Se	elect bit ⁽³⁾						
	1 = Seria	l output data ch	anges on transition from active clock state to Idle clock state (see CKP bit)						
	0 = Seria	l output data ch	anges on transition from Idle clock state to active clock state (see CKP bit)						
bit 7	SSEN: SI	ave Select Enal	ble (Slave mode) bit						
	$1 = \frac{55x}{55x}$	oin used for Sia	Ve mode Slave mode, nin controlled by port function						
bit 6	CKB. Clo	ck Polarity Sele	ct hit(4)						
bit 0	1 = Idle s	tate for clock is	a high level: active state is a low level						
	0 = Idle s	tate for clock is	a low level; active state is a high level						
bit 5	MSTEN:	Master Mode Ei	nable bit						
	1 = Maste	er mode							
	0 = Slave	e mode							
Noto		ng the 1.1 DPC	IK divisor the user software should not read or write the peripheral's SEDs in the						
Note	SYSCI K	cycle immediat	ely following the instruction that clears the module's ON bit						
:	2: This bit o	an only be writt	en when the ON bit = 0.						
:	3: This bit is	not used in the	Framed SPI mode. The user should program this bit to '0' for the Framed SPI						
	mode (FF	RMEN = 1).							
	4: When AU	IDEN = 1, the S	PI module functions as if the CKP bit is equal to '1', regardless of the actual value						
	of CKP.								

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in the PIC32MX330/350/370/430/450/470 family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 30 Mbps at 120 MHz
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- · Loopback mode for diagnostic support
- · LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 20-1 illustrates a simplified block diagram of the UART.

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽²⁾
 - 1 = Active-high (PMCS1)
 - $0 = \text{Active-low}(\overline{\text{PMCS1}})$
- bit 2 Unimplemented: Read as '0'
- bit 1 WRSP: Write Strobe Polarity bit
 - For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10):
 - 1 = Write strobe active-high (PMWR)
 - 0 = Write strobe active-low (PMWR)

For Master mode 1 (MODE<1:0> = 11):

- 1 = Enable strobe active-high (PMENB)
- 0 = Enable strobe active-low (PMENB)
- bit 0 RDSP: Read Strobe Polarity bit

For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10):

- 1 = Read Strobe active-high (PMRD)
- 0 = Read Strobe active-low (PMRD)

For Master mode 1 (MODE<1:0> = 11):

- 1 = Read/write strobe active-high (PMRD/ \overline{PMWR})
- 0 = Read/write strobe active-low (PMRD/PMWR)
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. The following are key features of this module:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- · Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- · Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

© 2012-2016 Microchip Technology Inc.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	-	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	_	-
45.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
15:8	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	—	—		
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1
7:0	_	_	_	—	JTAGEN	TROEN		TDOEN

REGISTER 28-5: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

- bit 13 **IOLOCK:** Peripheral Pin Select Lock bit⁽¹⁾
 - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed
 - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed
- bit 12 PMDLOCK: Peripheral Module Disable bit⁽¹⁾
 - 1 = Peripheral module is locked. Writes to PMD registers is not allowed
 - 0 = Peripheral module is not locked. Writes to PMD registers is allowed

bit 11-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port

bit 2 TROEN: Trace Output Enable bit

- 1 = Enable trace outputs and start trace clock (trace probe must be present)
- 0 = Disable trace outputs and stop trace clock
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
R R	Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24 VER<3:0>(1) DEVID<27:24>(1) 23:16 R R R R R R DEVID<23:16>(1) 15:8	04.04	R	R	R	R	R	R	R	R			
R R	31:24		VER•	<3:0> (1)		DEVID<27:24> ⁽¹⁾						
Z3:10 DEVID<23:16>(1) 15:8 R	00.40	R	R	R	R	R	R	R	R			
15:8 R R R R R R R R	23:10	DEVID<23:16> ⁽¹⁾										
15.8	45.0	R	R	R	R	R	R	R	R			
DEVID<15:8>(1)	15:8	DEVID<15:8> ⁽¹⁾										
R R R R R R R R R	7.0	R	R	R	R	R	R	R	R			
7:0 DEVID<7:0>(1)	7:0		DEVID<7:0> ⁽¹⁾									

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

zogonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

FIGURE 31-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	—	—	ns	—		
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	_	ns	—		
SP72	TscF	SCKx Input Fall Time	—		—	ns	See parameter DO32		
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31		
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_			ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_		ns	See parameter DO31		
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V		
	TscL2DoV	SCKx Edge			20	ns	VDD < 2.7V		
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	175	—		ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	_	25	ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS		STICS		Standard O (unless othe Operating te	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	_	
		Hold Time	400 kHz mode	600		ns		
			1 MHz mode (Note 1)	250		ns		
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	—	
		Clock	400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3	—	μS	must be free before a new	
			1 MHz mode (Note 1)	0.5	_	μS	transmission can start	
IS50	Св	Bus Capacitive Lo	ading		400	pF	—	

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2