

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Obsolete
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx330f064l-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX330/350/370/430/450/470

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

2.9 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.10 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-5. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-5: EMI/EMC/EFT SUPPRESSION CIRCUIT

NOTES:

Intermed Course(1)	IRO #	Vector		Interru	upt Bit Location		Persistent
Interrupt Source 7	IRQ #	#	Flag	Enable	Priority	Sub-priority	Interrupt
CNB – PORTB Input Change Interrupt	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>	Yes
CNC – PORTC Input Change Interrupt	46	33	IFS1<14>	IEC1<14>	IPC8<12:10>	IPC8<9:8>	Yes
CND – PORTD Input Change Interrupt	47	33	IFS1<15>	IEC1<15>	IPC8<12:10>	IPC8<9:8>	Yes
CNE – PORTE Input Change Interrupt	48	33	IFS1<16>	IEC1<16>	IPC8<12:10>	IPC8<9:8>	Yes
CNF – PORTF Input Change Interrupt	49	33	IFS1<17>	IEC1<17>	IPC8<12:10>	IPC8<9:8>	Yes
CNG – PORTG Input Change Interrupt	50	33	IFS1<18>	IEC1<18>	IPC8<12:10>	IPC8<9:8>	Yes
PMP – Parallel Master Port	51	34	IFS1<19>	IEC1<19>	IPC8<20:18>	IPC8<17:16>	Yes
PMPE – Parallel Master Port Error	52	34	IFS1<20>	IEC1<20>	IPC8<20:18>	IPC8<17:16>	Yes
SPI2E – SPI2 Fault	53	35	IFS1<21>	IEC1<21>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2RX – SPI2 Receive Done	54	35	IFS1<22>	IEC1<22>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2TX – SPI2 Transfer Done	55	35	IFS1<23>	IEC1<23>	IPC8<28:26>	IPC8<25:24>	Yes
U2E – UART2 Error	56	36	IFS1<24>	IEC1<24>	IPC9<4:2>	IPC9<1:0>	Yes
U2RX – UART2 Receiver	57	36	IFS1<25>	IEC1<25>	IPC9<4:2>	IPC9<1:0>	Yes
U2TX – UART2 Transmitter	58	36	IFS1<26>	IEC1<26>	IPC9<4:2>	IPC9<1:0>	Yes
I2C2B – I2C2 Bus Collision Event	59	37	IFS1<27>	IEC1<27>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2S – I2C2 Slave Event	60	37	IFS1<28>	IEC1<28>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2M – I2C2 Master Event	61	37	IFS1<29>	IEC1<29>	IPC9<12:10>	IPC9<9:8>	Yes
U3E – UART3 Error	62	38	IFS1<30>	IEC1<30>	IPC9<20:18>	IPC9<17:16>	Yes
U3RX – UART3 Receiver	63	38	IFS1<31>	IEC1<31>	IPC9<20:18>	IPC9<17:16>	Yes
U3TX – UART3 Transmitter	64	38	IFS2<0>	IEC2<0>	IPC9<20:18>	IPC9<17:16>	Yes
U4E – UART4 Error	65	39	IFS2<1>	IEC2<1>	IPC9<28:26>	IPC9<25:24>	Yes
U4RX – UART4 Receiver	66	39	IFS2<2>	IEC2<2>	IPC9<28:26>	IPC9<25:24>	Yes
U4TX – UART4 Transmitter	67	39	IFS2<3>	IEC2<3>	IPC9<28:26>	IPC9<25:24>	Yes
U5E – UART5 Error	68	40	IFS2<4>	IEC2<4>	IPC10<4:2>	IPC10<1:0>	Yes
U5RX – UART5 Receiver	69	40	IFS2<5>	IEC2<5>	IPC10<4:2>	IPC10<1:0>	Yes
U5TX – UART5 Transmitter	70	40	IFS2<6>	IEC2<6>	IPC10<4:2>	IPC10<1:0>	Yes
CTMU – CTMU Event	71	41	IFS2<7>	IEC2<7>	IPC10<12:10>	IPC10<9:8>	Yes
DMA0 – DMA Channel 0	72	42	IFS2<8>	IEC2<8>	IPC10<20:18>	IPC10<17:16>	No
DMA1 – DMA Channel 1	73	43	IFS2<9>	IEC2<9>	IPC10<28:26>	IPC10<25:24>	No
DMA2 – DMA Channel 2	74	44	IFS2<10>	IEC2<10>	IPC11<4:2>	IPC11<1:0>	No
DMA3 – DMA Channel 3	75	45	IFS2<11>	IEC2<11>	IPC11<12:10>	IPC11<9:8>	No
		Lowe	st Natural Or	der Priority			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of available peripherals.

ess		0								Bits															
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets						
1050		31:16		—	_	(CMP1IP<2:0>		CMP1IS	S<1:0>	_	—	—	F	CEIP<2:0>		FCEIS	<1:0>	0000						
IUFU	IFC0	15:0	—	—	—		RTCCIP<2:0>		RTCCIS	S<1:0>		—	—	FS	SCMIP<2:0	>	FSCMI	S<1:0>	0000						
1100		31:16	_	_	_		U1IP<2:0>		U1IS<	<1:0>	_	—	—	SPI1IP<2:0>			SPI1IS<1:0>		0000						
1100	IFC/	15:0	—	—	—	l	USBIP<2:0>(2	2)	USBIS<	:1:0> (2)		—	—	CMP2IP<2:0>		>	CMP2IS<1:0>		0000						
1110		31:16	_	_	_		SPI2IP<2:0>		SPI2IS<1:0> —		—	—	—	P	MPIP<2:0>		PMPIS<1:0>		0000						
1110	IFCo	15:0	_	_	_		CNIP<2:0>		CNIS<1:0>		—	—	—	12	2C1IP<2:0>		I2C1IS<1:0>		0000						
1100		31:16	_	_	_		U4IP<2:0>		U4IS<1:0>		—	—	—	U3IP<2:0>			U3IS<1:0>		0000						
1120	IFC9	15:0	—	—	—		I2C2IP<2:0>	2IP<2:0>		2IP<2:0>		C2IP<2:0>		I2C2IS<1:0>		I2C2IS<1:0>		—	—	-	U2IP<2:0>		U2IS·	<1:0>	0000
1120		31:16	—	—	—		DMA1IP<2:0>		DMA1IS	S<1:0>		—	—	DMA0IP<2:0>		>	DMA0	S<1:0>	0000						
1130	IFCIU	15:0	_	_	_	(CTMUIP<2:0	>	CTMU	S<1:0>	—	—	—	I	U5IP<2:0>		U5IS-	<1:0>	0000						
1140		31:16	—	—	—	—	—	—	-	-		—	—	-	—	—	-	_	0000						
1140	FOI	15:0	_	_	_		DMA3IP<2:0>	>	DMA3IS	S<1:0>	_	—	_	DI	MA2IP<2:0	>	DMA2	S<1:0>	0000						

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23:10	—	—	—	—	—	—	—	SS0
45.0	U-0 U-0		U-0	R/W-0	U-0	R/W-0 R/W-0		R/W-0
15:8	—	—	—	MVEC	—		TPC<2:0>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Read as '0'

- bit 16 SS0: Single Vector Shadow Register Set bit
 - 1 = Single vector is presented with a shadow register set
 - 0 = Single vector is not presented with a shadow register set

bit 15-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
 - 1 = Interrupt controller configured for multi vectored mode
 - 0 = Interrupt controller configured for single vectored mode

bit 11 Unimplemented: Read as '0'

- bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
 - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
 - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
 - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
 - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer 000 = Disables Interrupt Proximity timer
- bit 7-5 **Unimplemented:** Read as '0'
- bit 4 **INT4EP:** External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

REGISTER 8-1:	OSCCON: OSCILLATOR	CONTROL REGISTER
---------------	--------------------	-------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24 U-0		U-0	R/W-y	R/W-y	R/W-y	R/W-0 R/W-0		R/W-1
31.24	—	—	P	LLODIV<2:0	>	FRCDIV<2:0>		
22:16	U-0	R-0	R-1 R/W-y		R/W-y	R/W-y	R/W-y	R/W-y
23.10	—	SOSCRDY	PBDIVRDY	PBDI\	/<1:0>	P	LLMULT<2:0>	•
15.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	
10.0	—		COSC<2:0>		—			
7:0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0
7.0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN

Legend:

y = Value set from Configuration bits on POR

Legenu.	y - value set nom comig		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-27 PLLODIV<2:0>: Output Divider for PLL
 - 111 = PLL output divided by 256
 - 110 = PLL output divided by 64
 - 101 = PLL output divided by 32
 - 100 = PLL output divided by 16
 - 011 = PLL output divided by 8
 - 010 = PLL output divided by 4
 - 001 = PLL output divided by 2
 - 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

12.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the presence of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MX330/350/370/430/450/470 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it. The pullups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on change notifi-
	cation pins should always be disabled
	when the port pin is configured as a digital
	output. They should also be disabled on
	5V tolerant pins when the pin voltage can
	exceed VDD.

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

sse										Bits									
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_		_	_	_	—	_	_	_	—	_	—	—	—	_		0000
0210	INIOC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1		xxxx
6220	PORTC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0220	TORIC	15:0	RC15	RC14	RC13	RC12	_	—	_	_	_	_	_	RC4	RC3	RC2	RC1		xxxx
6230		31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0230	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	—	_	_	_	—	_	LATC4	LATC3	LATC2	LATC1		xxxx
6240	ODCC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0240	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	—	_	_	_	_	_	ODCC4	ODCC3	ODCC2	ODCC1		xxxx
6250	CNPUC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0230		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	—	_	_	_	_	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1		xxxx
6260	CNPDC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	—	_	_	_	_	_	CNPDC4	CNPDC3	CNPDC2	CNPDC1		xxxx
6270	CNCONC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0270	CINCOINC	15:0	ON	_	SIDL	_	_	—	_	_	_	_	_	_	—	—	—		0000
6280	CNENC	31:16	_	—		_	_	—	_	_	_	_	_	_	—	—	—		0000
0200	ONLINO	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12		—				—	_	CNIEC4	CNIEC3	CNIEC2	CNIEC1		xxxx
6290	CNSTATC	31:16	_	—		_	_	—	_	_	_	—	_	—	—	—	—		0000
0290	SNOTATO	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_	_	—	_	_	_	_	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	—	xxxx

TABLE 12-5: PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-8: PORTD REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, PIC32MX470F512H DEVICES ONLY

ess	50	6								B	lits								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300		31:16	_	—	—	—	—	—	—	—	—	—	_	_	—	—	_	—	0000
0000	ANOLLD	15:0	_	—	—	—	—	—	—	—	—	—	—	—	ANSELD3	ANSELD2	ANSELD1	—	000E
6310	TRISD	31:16	_		—	—	—		—	—	—		—	—	—		—		0000
0010	TRIOD	15:0	_	—	—	—	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	xxxx
5320	PORTD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
0020		15:0	_	—	—	—	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	LATD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
	0.0	15:0	_	—	—	—	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6340	ODCD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
00.0	0000	15:0	_	—	—	—	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	xxxx
6350	CNPUD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
	0.11 00	15:0	_	—	—	—	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	xxxx
6360	CNPDD	31:16	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
	0.11 00	15:0	_	—	—	—	CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	xxxx
6370	CNCOND	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	0.100.15	15:0	ON		SIDL	—	—	_	—	_		—	—	_	—	—	—	—	0000
6380	CNEND	31:16	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
0000	ONLIND	15:0	—	—	—	—	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	xxxx
		31:16	_		—	—	—		—	—		—	—	—	—	—	—	—	0000
6390	CNSTATD	15:0	_	—	—	—	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	xxxx

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

NOTES:

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit 1 = High-Speed mode – 4x baud clock enabled 0 = Standard Speed mode – 16x baud clock enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit 1 = 2 Stop bits 0 = 1 Stop bit

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10	<3:0>		HR01<3:0>					
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:10		MIN10	<3:0>		MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10	<3:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	—	—	—	—	—	-	—	—		
Legend:	Legend:									
R = Read	R = Readable bit W = Writable bit			e bit	U = Unimplemented bit, read as '0'					
-n = Value	e at POR		'1' = Bit is se	et	'0' = Bit is cl	eared	x = Bit is un	known		

REGISTER 22-5: ALRMTIME: ALARM TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)

- 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
- 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 **SAMP:** ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when ADC is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	CH0NB	—	—	CH0SB<4:0>						
23:16	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	CH0NA ⁽³⁾	—	—			CH0SA<4:0>				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	—	—	—	—	—	—	—	-		
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	_		_		_	_	_			

REGISTER 23-4: AD1CHS: ADC INPUT SELECT REGISTER

CHONB: Negative Input Select bit for Sample B

Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL
bit 30-29	Unimplemented: Read as '0'
bit 28-24	CH0SB<4:0>: Positive Input Select bits for Sample B
	 11110 = Channel 0 positive input is Open⁽¹⁾ 11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽²⁾ 11100 = Channel 0 positive input is IVREF⁽³⁾ 11011 = Channel 0 positive input is AN27
	•
	•
	•
	00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
bit 23	CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽³⁾
	1 = Channel 0 negative input is AN10 = Channel 0 negative input is VREFL
bit 22-21	Unimplemented: Read as '0'
bit 20-16	CH0SA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting 11110 = Channel 0 positive input is Open ⁽¹⁾ 11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾ 11100 = Channel 0 positive input is IVREF ⁽³⁾ 11011 = Channel 0 positive input is AN27
	•
	•
	00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
bit 15-0	Unimplemented: Read as '0'
Note 1: 2:	This selection is only used with CTMU capacitive and time measurement. See Section 26.0 "Charge Time Measurement Unit (CTMU) " for more information.

3: See Section 25.0 "Comparator Voltage Reference (CVREF)" for more information.

25.1 Control Register

TABLE 25-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess										Bits									ú
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	_	_	_	—	-	_	_	—	—	_	—	_	_	—	_	_	0000
9000	CVRCON	15:0	ON	_	_	_	—	_	—	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

NOTES:

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-								
R R	Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24 VER<3:0>(1) DEVID<27:24>(1) 23:16 R R R R R R DEVID<23:16>(1) 15:8	04.04	R	R	R	R	R	R	R	R			
R R	31:24		VER•	<3:0> (1)		DEVID<27:24> ⁽¹⁾						
Z3:10 DEVID<23:16>(1) 15:8 R	00.40	R	R	R	R	R	R	R	R			
15:8 R R R R R R R R	23:10	DEVID<23:16> ⁽¹⁾										
15.8	45.0	R	R	R	R	R	R	R	R			
DEVID<15:8>(1)	15:8	DEVID<15:8> ⁽¹⁾										
R R R R R R R R R	7.0	R	R	R	R	R	R	R	R			
7:0 DEVID<7:0>(1)	7:0				DEVID<	:7:0>(1)						

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

zogonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

TABLE 31-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Charac	teristics ⁽²⁾	-	Min.	Typical	Max.	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15	
			Asynchronous, with prescaler		10	_		ns		
TA11	ΤτxL	TxCK Low Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 Трв)/N] + 25 ns	_		ns	Must also meet parameter TA15	
			Asynchror with presc	nous, aler	10 —			ns	—	
TA15	ΤτχΡ	TxCK Input Period	xCK Synchronous, put Period with prescaler Asynchronous, with prescaler		[(Greater of 25 ns or 2 Трв)/N] + 30 ns	_		ns	VDD > 2.7V	
					[(Greater of 25 ns or 2 Трв)/N] + 50 ns	_		ns	VDD < 2.7V	
					20	_	_	ns	VDD > 2.7V (Note 3)	
			50	_		ns	VDD < 2.7V (Note 3)			
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by se TCS bit (T1CON<1>))		tting	32	_	100	kHz	_	
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	external Tx0 Timer	CK	_		1	Трв	—	

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

TABLE 31-32: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHA	RACTERIS	TICS	Standard (unless of Operating	I Operating otherwise st g temperatur	Conditi tated) re 0°C -40° -40°	ons: 2.3 ≤ Ta ≤ + C ≤ Ta ≤ C ≤ Ta ≤	3V to 3.6V •70°C for Commercial ≤ +85°C for Industrial ≤ +105°C for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175			ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	5		25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тѕск + 20		_	ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	25	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.