

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 0 0 0 0 0	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx330f064lt-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS

		Pin Numb	er			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
AN0	16	25	B14		Analog	
AN1	15	24	A15	I	Analog	
AN2	14	23	B13	I	Analog	
AN3	13	22	A13	I	Analog	
AN4	12	21	B11	I	Analog	
AN5	11	20	A12	I	Analog	
AN6	17	26	A20	I	Analog	
AN7	18	27	B16	I	Analog	
AN8	21	32	A23	I	Analog	
AN9	22	33	B19	I	Analog	
AN10	23	34	A24	I	Analog	
AN11	24	35	B20	I	Analog	
AN12	27	41	B23	I	Analog	
AN13	28	42	A28	I	Analog	Analog input channels.
AN14	29	43	B24	I	Analog	
AN15	30	44	A29	I	Analog	
AN16	4	10	A7	I	Analog	
AN17	5	11	B6	I	Analog	
AN18	6	12	A8	I	Analog	
AN19	8	14	A9	I	Analog	
AN20	62	98	A66	I	Analog	
AN21	64	100	A67	I	Analog	
AN22	1	3	B2	I	Analog	
AN23	2	4	A4	I	Analog	
AN24	49	76	A52	I	Analog	
AN25	50	77	B42	I	Analog	
AN26	51	78	A53	I	Analog	
AN27	3	5	B3	I	Analog	
CLKI	39	63	B34	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.
OSC1	39	63	B34	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	73	A47	Ι	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	74	B40	0	—	32.768 kHz low-power oscillator crystal output.
-	ST = Schm		tible input or o out with CMOS			alog = Analog input P = Power = Output I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

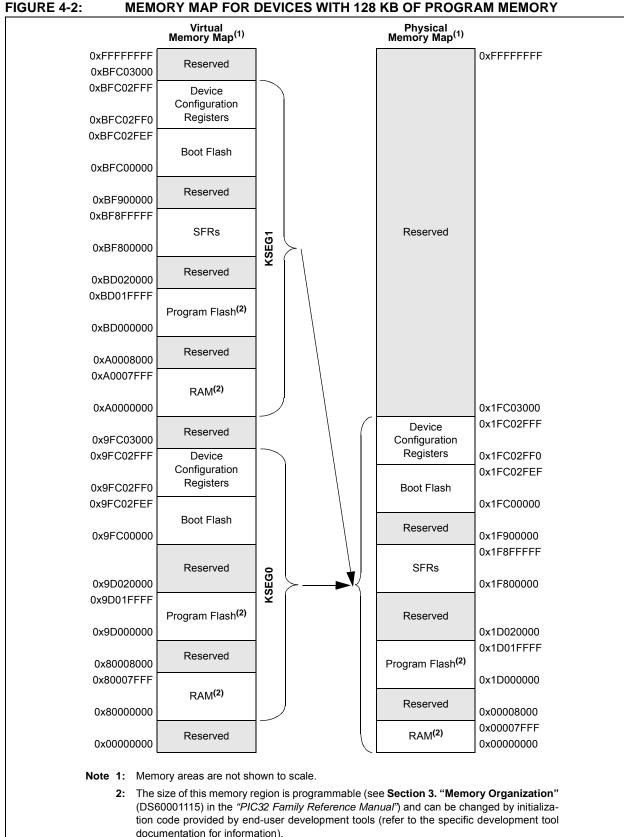
2.1 Basic Connection Requirements

Getting started with the PIC32MX330/350/370/430/ 450/470 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.8 "External Oscillator Pins")

The following pins may be required:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.


Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24			_	—	_	—		—						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	_	—	—	—		—	—	—						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0						
15:8	BMXDUPBA<15:8>													
7.0	R-0 R-0		R-0	R-0	R-0	R-0	R-0	R-0						
7:0				BMXDU	PBA<7:0>									

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 BMXDUPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

5.1 Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		0								Bi	ts								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400	NVMCON ⁽¹⁾	31:16																	
1400	NVINCON /	15:0	WR	VR WREN WRERR LVDERR LVDSTAT NVMOP<3:0> 0000															
F410	NVMKEY	31:16								NVMKE	V<31·0>								0000
		15:0												0000					
E420	NVMADDR ⁽¹⁾	31:16								NVMADE	D-31.05								0000
1 420	NVINADDIX	15:0								INVINADL	11-31.02								0000
F430	NVMDATA	31:16								NVMDAT	A-21:0>								0000
F430	NVINDATA	15:0								INVIVIDAI	A<31.0>								0000
F440	NVMSRC	31:16								VMSRCA	221.05								0000
F440	ADDR	15:0							I	NVIVISRCA	JUK<31:0>	•							0000

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	—	—	—	—	—	—	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	-	—	—	—		—	
45.0	R/W-0	R/W-0	R-0	R-0	R-0	U-0	U-0	U-0	
15:8	WR	WREN	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	LVDSTAT ⁽¹⁾	—	—	_	
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	—	—		—		NVMOF	°<3:0>		

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

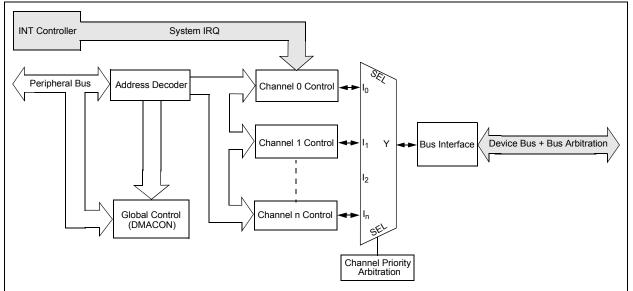
bit 31-16 Unimplemented: Read as '0'

bit 15	WR: Write Control bit
	This bit is writable when WREN = 1 and the unlock sequence is followed.
	1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
	0 = Flash operation complete or inactive
bit 14	WREN: Write Enable bit
	1 = Enable writes to WR bit and enables LVD circuit
	0 = Disable writes to WR bit and disables LVD circuit
	This is the only bit in this register reset by a device Reset.
bit 13	WRERR: Write Error bit ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Program or erase sequence did not complete successfully
	0 = Program or erase sequence completed normally
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Low-voltage detected (possible data corruption, if WRERR is set)
	0 = Voltage level is acceptable for programming
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set, and cleared, by hardware.
	1 = Low-voltage event active
	0 = Low-voltage event NOT active
bit 10-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation bits
	These bits are writable when WREN = 0.
	1111 = Reserved
	•
	0111 = Reserved
	0110 = No operation
	0101 = Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
	0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
	0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected 0010 = No operation
	0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected
	0000 = No operation

Note 1: This bit is cleared by setting NVMOP = 0000, and initiating a Flash operation (i.e., WR).

REGIST	ER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)
bit 9-8	IS1<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP0<2:0>: Interrupt Priority bits
	<pre>111 = Interrupt priority is 7</pre>
	001 = Interrupt priority is 1 000 = Interrupt is disabled
bit 1-0	ISO<1:0>: Interrupt Subpriority bits
	<pre>11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0</pre>
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

Following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- · Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

bit 4 **CHDHIF:** Channel Destination Half Full Interrupt Flag bit

- 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
- 0 = No interrupt is pending
- bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
 - 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
 - 0 = No interrupt is pending
- bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
 - 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
 - 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending
- bit 0 CHERIF: Channel Address Error Interrupt Flag bit
 - 1 = A channel address error has been detected
 - Either the source or the destination address is invalid.
 - 0 = No interrupt is pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24 23:16		_				—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	_			-	—		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	_			-	—		—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
7.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE

REGISTER 11-2: U10TGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

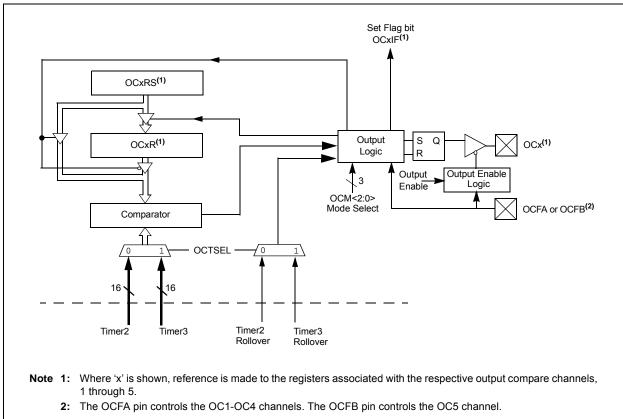
- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt is enabled
 - 0 = 1 millisecond timer interrupt is disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt is enabled
 - 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt is enabled
 - 0 = ACTIVITY interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt is enabled
 - 0 = B-session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt is enabled
 - 0 = A-VBUS valid interrupt is disabled

		P	C32MX	430F064	L, PIC3	2MX450	F128L,	PIC32M	X450F2	56L, AN	ID PIC3	2MX47	0F512L	DEVIC	ES ONL	.Y			
ess										Bits	6								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300	ANSELD	31:16		—	—	—	—		—	—	—		—	—	—		—		0000
		15:0	_	—	—	_	—	—	—	—	—	_	—	—	ANSELD3	ANSELD2	ANSELD1	_	000E
6310	TRISD	31:16	_	—	—	—	—	—	—	—	—		—	_	_	_	—	_	0000
	_	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	xxxx
5320	PORTD	31:16	_	—	_	—	—	—	—	—	—		—	—		—	—	_	0000
	_	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	LATD	31:16		—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
6340	ODCD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	xxxx
6350	CNPUD	31:16	-	—	—	—	—	-	—	—	—	—	—	—	—	—	—	-	0000
		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10		CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	xxxx
6360	CNPDD	31:16	-	—	—	—	—	-	—	—	—	—	_	—	—	—	—	_	0000
			CNPDD15	-	CNPDD13	CNPDD12	CNPDD11	CNPDD10		CNPDD8	-	CNPDD6		CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	XXXX
6370	CNCOND	31:16	_		-											_			0000
		15:0	ON		SIDL											_			0000
6380	CNEND	31:16	-	-	-	-			-	-	-		-	-	-	-			0000
		15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	XXXX
6200		31:16	-	-	—	—	—	-	-	-	-	-	—	-	—	—	—	-	0000
6390	CNSTATD	15:0	CNS TATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	xxxx

TABLE 12-7: PORTD REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.


17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

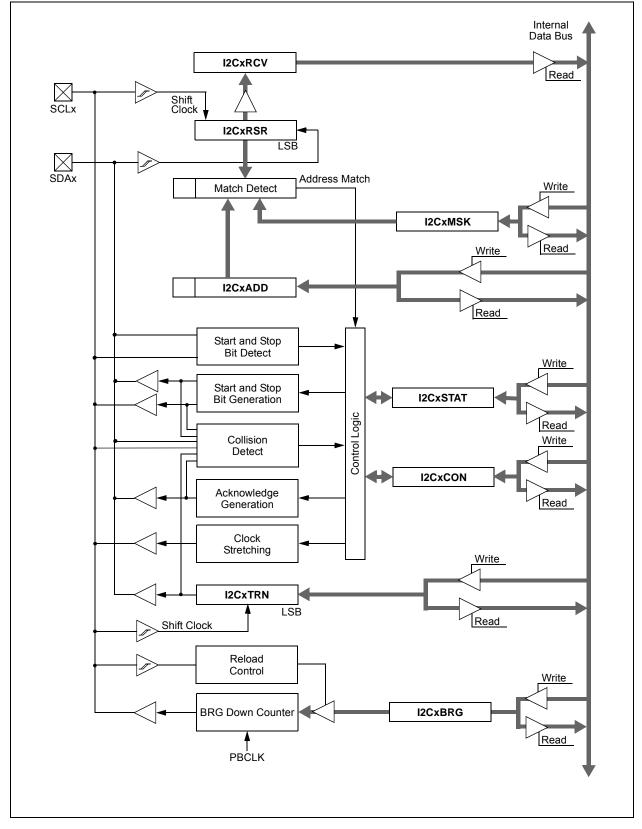

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

FIGURE 19-1: I²C BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

REGISTER 19-1: I2CxCON: I²C CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	_	_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	—	_	_	_	_			
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	0N ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN			
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			

Legend:	HC = Cleared in Hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** I²C Enable bit⁽¹⁾
 - 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
 - 0 = Disables the I^2 C module; all I^2 C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock

bit 12

- 0 = Hold SCLx clock low (clock stretch)
- If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule is not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 **DISSLW:** Disable Slew Rate Control bit
 - 1 = Slew rate control is disabled
 - 0 = Slew rate control is enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

	LE 20-1:			HROUG						-0)									-
ess)		۵								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6440		31:16	_			—	_	—		—	—	—	—	—	—	—	—	_	0000
0440	U3BKG.	15:0				-			Bau	d Rate Gene	erator Pres	caler			-	-	-		0000
6600 U4N		31:16	_	—	—	—	—	_	_	—	—	—	—	—	—	—	—	—	0000
	OIMODE	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6610	U4STA ⁽¹⁾	31:16	—	—	—	—	—	—	—	ADM_EN	DM_EN ADDR<7:0>					0000			
0010	04017	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620	U4TXREG	31:16	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
0020		15:0	—	—	—	—	—	—	—	TX8				Transmit	Register				0000
6630	U4RXREG	31:16	—	—	—	—	—	_	_	—	—	—	—	_	—	—	—	—	0000
	0.1.0.1.20	15:0	_	—	—	—	—	_	_	RX8				Receive	Register				0000
6640	U4BRG ⁽¹⁾	31:16	—	_	_	—	—	_	—	_	—	—	—	—	—	—	—	—	0000
	0.5.10	15:0											0000						
6800	U5MODE ⁽¹⁾	31:16	_	_	—	—	—	—		—	—		—	—	_		<u> </u>	_	0000
		10.0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U5STA ⁽¹⁾	31:16	_		_	—	—	—		ADM_EN					R<7:0>	1	1		0000
		15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG	31:16	_	_	_	—	—	—		—	—	—	—	—	—		<u> </u>	_	0000
0020		15:0	_	—	—	—	—	_	_	TX8				Transmit	Register				0000
6830	U5RXREG	31:16	_	—	—	—	—	_	_	—	—	—	—	—	—	—	—	—	0000
		15:0	_	_	_		—	_		RX8				Receive	Register				0000
6840	U5BRG ⁽¹⁾	31:16	_	_	_	—	—	_	—	—	_	—	—	_	—	—	—	—	0000
		15:0							Bau	d Rate Gene	erator Pres	caler							0000

TABLE 20-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit 3/15/7 R	Bit 30/22/14/6 R	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0									
R	R	Р					24/10/0/0									
		R	R	R	R	R	R									
	VER<	:3:0> ⁽¹⁾		DEVID<27:24> ⁽¹⁾												
R	R	R	R	R	R	R	R									
DEVID<23:16> ⁽¹⁾																
R	R	R	R	R	R	R	R									
DEVID<15:8> ⁽¹⁾																
R	R	R	R	R	R	R	R									
			DEVID<	7:0>(1)		DEVID<7:0>(1)										
R	2	R R	R R	DEVID<2 R R R R DEVID<7 R R R R	DEVID<23:16> ⁽¹⁾ R R R R R DEVID<15:8> ⁽¹⁾ R R R R R	DEVID<23:16> ⁽¹⁾ R R R R R R DEVID<15:8> ⁽¹⁾ R R R R R R	DEVID<23:16>(1) R R R R DEVID<15:8> ⁽¹⁾ R R R R									

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

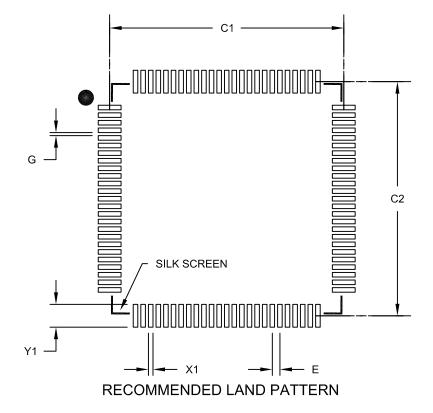

AC CHA	RACTERIS	STICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—		
		Hold Time	400 kHz mode	600	_	ns			
			1 MHz mode (Note 1)	250		ns			
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—		
			400 kHz mode	0	1000	ns			
			1 MHz mode (Note 1)	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus		
			400 kHz mode	1.3		μs	must be free before a new		
			1 MHz mode (Note 1)	0.5	—	μS	transmission can start		
IS50	Св	Bus Capacitive Lo	ading		400	pF	—		

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	-
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B