

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx330f064lt-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

TABLE 4: PIN NAMES FOR 100-PIN DEVICES

100-PIN TQFP (TOP VIEW)^(1,2,3)

PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L

100

Pin # Full Pin Name Pin # Full Pin Name **RG15** Vss 1 36 2 VDD 37 VDD AN22/RPE5/PMD5/RE5 TCK/CTED2/RA1 3 38 AN23/PMD6/RE6 **RPF13/RF13** 4 39 AN27/PMD7/RE7 RPF12/RF12 5 40 RPC1/RC1 6 41 AN12/PMA11/RB12 RPC2/RC2 AN13/PMA10/RB13 7 42 8 RPC3/RC3 43 AN14/RPB14/CTED5/PMA1/RB14 RPC4/CTED7/RC4 44 AN15/RPB15/OCFB/CTED6/PMA0/RB15 9 10 AN16/C1IND/RPG6/SCK2/PMA5/RG6 45 Vss AN17/C1INC/RPG7/PMA4/RG7 11 46 Voo AN18/C2IND/RPG8/PMA3/RG8 47 RPD14/RD14 12 MCLR 48 RPD15/RD15 13 AN19/C2INC/RPG9/PMA2/RG9 49 RPF4/PMA9/RF4 14 RPF5/PMA8/RF5 15 Vss 50 VDD RPF3/RF3 16 51 TMS/CTED1/RA0 RPF2/RF2 17 52 RPE8/RE8 RPF8/RF8 18 53 RPE9/RE9 RPF7/RF7 54 19 AN5/C1INA/RPB5/RB5 RPF6/SCK1/INT0/RF6 20 55 AN4/C1INB/RB4 SDA1/RG3 21 56 22 PGED3/AN3/C2INA/RPB3/RB3 57 SCL1/RG2 PGEC3/AN2/C2INB/RPB2/CTED13/RB2 SCL2/RA2 58 23 24 PGEC1/AN1/RPB1/CTED12/RB1 59 SDA2/RA3 PGED1/AN0/RPB0/RB0 TDI/CTED9/RA4 25 60 PGEC2/AN6/RPB6/RB6 TDO/RA5 26 61 PGED2/AN7/RPB7/CTED3/RB7 62 VDD 27 VREF-/CVREF-/PMA7/RA9 63 OSC1/CLKI/RC12 28 VREF+/CVREF+/PMA6/RA10 OSC2/CLKO/RC15 29 64 30 AVDD 65 Vss 31 AVss 66 RPA14/RA14 AN8/RPB8/CTED10/RB8 32 67 **RPA15/RA15** AN9/RPB9/CTED4/RB9 RPD8/RTCC/RD8 33 68 CVREFOUT/AN10/RPB10/CTED11PMA13/RB10 RPD9/RD9 69 34 35 AN11/PMA12/RB11 70 RPD10/PMCS2/RD10

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "VO Ports" for more information.

3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.

FIGURE 2-8: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e[®], is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	EBASE	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration register 1.
16	Config2	Configuration register 2.
16	Config3	Configuration register 3.
17-22	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:10	—	—	—	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8	BMXDUDBA<15:8>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
		BMXDUDBA<7:0>									

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

5.1 Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess				Bits																	
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
E400		31:16		—	—	—			—		_	—	—		—		—		0000		
1400	NVINCON /	15:0	WR	WREN	WRERR	LVDERR	LVDSTAT		-	_	_	_	_	_		NVMO	P<3:0>		0000		
E410		31:16									V~31·0>						0				
1410		15:0									1~51.0~								0000		
E420		31:16									D-31.05								0000		
1 420	NVINADDR. /	15:0									///////////////////////////////////////								0000		
E420		31:16									-1-21.05								0000		
F430	NVIVIDATA	15:0	15:0 10000000000000000000000000000000000									0000									
E440	NVMSRC	31:16											0000								
г440	ADDR	15:0							1	IVIVISRUA	008-31.02	~							0000		
		al en en la companya de la contra de la contra de contra de la contra de la contra de la contra de la contra de																			

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

7.1 Interrupts Control Registers

TABLE 7-2: INTERRUPT REGISTER MAP

ess										Bits									
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000		31:16	_		—		—				—	—	_	—			—	SS0	0000
1000	INTCON	15:0	_	_	_	MVEC	—		TPC<2:0>		—	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT	31:16	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_	0000
1010		15:0	—	—	—	—	—		SRIPL<2:0>		—	—			VEC<5:0)>			0000
1020	IPTMR	31:16 15:0					IPTMR<31:0>							0000					
1000	1500	31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
1030	IF50	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1040	IES1	31:16	U3RXIF	U3EIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	CNGIF	CNFIF	CNEIF	0000
1040	IF31	15:0	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP2IF	CMP1IF	0000
1050	IES2	31:16	_	-	—	-	—				—	—	—	—			_	_	0000
1050	11 02	15:0	_	_	—	_	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	U5TXIF ⁽¹⁾	U5RXIF ⁽¹⁾	U5EIF ⁽¹⁾	U4TXIF	U4RXIF	U4EIF	U3TXIF	0000
1060	IEC0	31:16	FCEIE	RTCCIE	FSCMIE	AD1IE	OC5IE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000
	1200	15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
1070	IEC1	31:16	U3RXIE	U3EIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	CNGIE	CNFIE	CNEIE	0000
		15:0	CNDIE	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1TXIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP2IE	CMP1IE	0000
1080	IEC2	31:16		_	—	_	—	—	—	—	—					—			0000
		15:0		_		_	DMA3IE	DMA2IE	DMA1IE	DMAOIE	CTMUIE	U5TXIE()	U5RXIE ⁽¹⁾	USEIE	U4TXIE	U4RXIE	U4EIE	U3TXIE	0000
1090	IPC0	31:16		_			INT0IP<2:0>		INTOIS	<1:0>			_	C	S1IP<2:0>		CS1IS	S<1:0>	0000
		15:0	_				CSUIP<2:0>			<1:0>		_		(-11P<2:0>		00115	<1:0>	0000
10A0	IPC1	31.10								<1.0>				-				~1.0>	0000
		31.16								<1.0>	_			0	0210-2:0-		00215	<1.0×	0000
10B0	IPC2	15.0					IC2IP<2:0>		101213	<1.0>				-	T21P<2.0>		T215	<1.0>	0000
		31.16					INT3IP<2:0>		INTSIS	<1:0>				00312-2:0>			00315	<1:02 <1:02	0000
10C0	IPC3	15.0			_		IN 13IP<2:0>		IC3IS	<1:0>	_	_	_	T3IP<2:0>		> T3I9210		<1:0>	0000
		31:16		_			INT4IP<2:0>		INT4IS	<1:0>	_	_	_	0	C4IP<2:0>		OC4IS	S<1:0>	0000
10D0	IPC4	15:0	_	_	_		IN 14IP<2.0>		0> IC4IS<		_	_	_	T4IP<2:0>		T4IS	<1:0>	0000	
		31:16	_	_	_		AD1IP<2:0>		AD1IS	<1:0>	_	_	_	0	C5IP<2:0>		OC5IS	6<1:0>	0000
10E0	IPC5	15:0	—	_	—		IC5IP<2:0>		IC5IS•	<1:0>	—	_	_	1	T5IP<2:0>		T5IS-	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

Control Registers 11.1

TABLE 11-1: USB REGISTER MAP

ess				Bits																
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
5040		31:16			_	_	_	_	_	_	_		_			_	—	_	0000	
5040	UTOTGIR-	15:0				—		—	—	_	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF	0000	
5050		31:16		_		_		_	_	_	—		_	-	_	—	_	—	0000	
5050	UIUIGIE	15:0	—	_		—		—	—	—	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE	0000	
5060		31:16	_	_		_		_	_	_	—	-	_	-	_	—	—	—	0000	
3000	UTUTUSTAT.	15:0		_	_	—	_	—	_	—	ID		LSTATE		SESVD	SESEND	-	VBUSVD	0000	
5070		31:16		_	_	—	_	—	_	—	_		_		—	—	-	-	0000	
3070	01010001	15:0	_	—	—	—	—	—	—	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000	
5080	U1PWRC	31:16	—			—		—	—	—	—	_	—	_	—	—			0000	
0000	on mito	15:0	—	—	—	—	—	—	—	—	UACTPND ⁽⁴⁾	—	—	USLPGRD	USBBUSY		USUSPEND	USBPWR	0000	
		31:16	_	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—	0000	
5200	00 U1IR ⁽²⁾	U1IR ⁽²⁾	15.0	_	_	_	_	_	_	_	_	STALLIF	ATTACHIE	RESUMEIE	IDI FIF	TRNIF	SOFIF UERRIF	UFRRIF	URSTIF	0000
		10.0										T COUNCIL			00111	OEraan	DETACHIF	0000		
		31:16	_	_		_		_	_	_	—	_	_	_	_	_	_	_	0000	
5210	U1IE	15:0	_		_	_	_	_	_	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000	
											_	-					-	DETACHIE	0000	
	(2)	31:16	_	—	_	—	_	—	—	—	_	—	_	_	—	—	—	_	0000	
5220	U1EIR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000	
			-														EOFEF		0000	
		31:16		_	_	_	_	_	_	_	—	_	—	—	-	-	-	_	0000	
5230	U1EIE	15:0	_	_	_	_	_	_	_	_	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	0000	
		04.40															EOFEE		0000	
5240	U1STAT ⁽³⁾	31:16		—					_		_			—	-	-			0000	
		15:0				_		_	_	_		ENDF	21<3:0>		DIR	PPBI			0000	
		31:16	_			_		_	_	_	_		-	_		—		-	0000	
5250	U1CON	15:0	_	_	_	_	_	_	_	_	JSTATE	SE0	PKTDIS	USBRST	HOSTEN	RESUME	PPBRST	USBEN	0000	
													TOKBUSY					SOFEN	0000	
5260	U1ADDR	31:16	_	_	_	_	_	_	_	_			_	-			—	—	0000	
		15:0	_	—	_		_			– LSPDEN DEVADDR<6:0>			0000							
5270	U1BDTP1	31:16	_							_	—	—			—	-	—	—	0000	
Ļ		15:0								<u> </u>			BD	1PTRL<15:9>	>			_	0000	

DS60001185F-page 115

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Note 1:

2: This register does not have associated SET and INV registers.

This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
15:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		SEO	PKTDIS ⁽⁴⁾	HEBDET		DESIME(3)	DDDDCT	USBEN ⁽⁴⁾
	JUNE	SE0	TOKBUSY ^(1,5)	USBROI	HOSTEN,	RESUMEN	FFDROI	SOFEN ⁽⁵⁾

REGISTER 11-11: U1CON: USB CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE detected on the USB
 - 0 = No JSTATE detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single Ended Zero detected on the USB
 0 = No Single Ended Zero detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token being executed by the USB module
 - 0 = No token being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset is generated
- 0 = USB reset is terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability is enabled
- 0 = USB host capability is disabled

bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾

- 1 = RESUME signaling is activated
- 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

12.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

12.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

12.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

12.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

13.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a freerunning interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (SOSC) for Real-Time Clock (RTC) applications. The following modes are supported:

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

13.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	—	—	—
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE		TCKP	S<1:0>		TSYNC	TCS	_

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	ON: Timer On bit ⁽¹⁾
	1 = Timer is enabled
	0 = Timer is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode
bit 12	TWDIS: Asynchronous Timer Write Disable bit
	1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11	TWIP: Asynchronous Timer Write in Progress bit
	In Asynchronous Timer mode:
	1 = Asynchronous write to TMR1 register in progress
	0 = Asynchronous write to TMR1 register complete
	This bit is read as '0'.
bit 10-8	Unimplemented: Read as '0'
bit 7	TGATE: Timer Gated Time Accumulation Enable bit
	When TCS = 1:
	This bit is ignored.
	When ICS = 0:
	0 = Gated time accumulation is enabled
bit 6	Unimplemented: Read as '0'
bit 5-4	TCKPS<1:0>: Timer Input Clock Prescale Select bits
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value
DIT 3	Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- · Synchronous external 16-bit timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- · Synchronous internal 32-bit timer
- · Synchronous internal 32-bit gated timer
- · Synchronous external 32-bit timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 in 16-bit mode, Timer2/ 3 in 32-bit mode)
- Fast bit manipulation using CLR, SET, and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

REGISTE	R 19-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	-	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
7:0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
	OBE	OBUF	_	—	OB3E	OB2E	OB1E	OB0E

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Set by Hardware	SC = Cleared by software	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 IBxF: Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)0 = No underflow occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess		Bits																	
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Rese
0200	PTCCON	31:16	—	—	—	—	_	—					CAL<	9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	_	—	-		RTSECSEL	RTCCLKON	—	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210		31:16		_	_	—		_			—	_	_	_	_	_	_	—	0000
0210	RICALRI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASK<3:0> ARPT<7:0>								0000			
0220	DTOTIME	31:16		HR1	0<3:0>		HR01<3:0>				MIN10<3:0>				MIN01<3:0>				xxxx
0220	RICHIVIL	15:0	5:0 SEC10<3:0>			SEC01<3:0>			_	_	_	_	_	_	_	—	xx00		
0230	DTODATE	31:16	YEAR10<3:0>				YEAR01<3:0>			MONTH10<3:0>			MONTH01<3:0>				xxxx		
0230	RICDAIL	15:0		DAY10<3:0>				DAY01<3:0>			_	_	_	_		WDAY0	1<3:0>		xx00
0240		31:16		HR1	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		_	_	_	_	_	_	_	—	xx00
0250		31:16		_	_	—		_				MONTH10)<3:0>			MONTH	01<3:0>		00xx
0230		15:0		DAY1	0<3:0>			DAY01	1<3:0>		_	_	—	_		WDAY0	1<3:0>		xx0x

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

23.1 **Control Registers**

TABLE 23-1: ADC REGISTER MAP

SSS										Bi	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	-	—	_	_	_	—	—	—	_	—	—	_	—	—	_	—	0000
9000	ADICONT	15:0	ON	_	SIDL	—	_		FORM<2:0	>		SSRC<2:0>	>	CLRASAM	_	ASAM	SAMP	DONE	0000
0010		31:16			—	—	—	—		—		—		—	—	—			0000
9010	AD ICONZ ⁽)	15:0	VCFG<2:0> OFFCAL —					CSCNA	—	—	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
0020		31:16	—	_	—	—	—	—	_	—	—	—	—	_	—	_	—	_	0000
9020	AD ICONS'	15:0	ADRC	—	—		:	SAMC<4:0	>					ADCS	\$<7:0>				0000
0040		31:16	CH0NB	_	—		(CH0SB<4:0	>		CH0NA	_	_		(CH0SA<4:0	>		0000
5040	AD ICHS.	15:0		—	-	_	—	—	—	—		—	—	-	—	—		—	0000
0050		31:16	_	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24	CSSL23	CSSL22	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16	0000
9030	ADTOSSL	15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
0070		31:16								sult Word 0		0~31.05)							0000
9070	ADCIBOIO	15:0							ADC Ne		(ADC ID0I	0<31.02)							0000
9080		31:16								sult Word 1		1<31.0>)							0000
3000	ADCIDOI I	15:0							ADC Net			1501.02)							0000
anan		31:16								sult Word 2		2<31.0>)							0000
3030	ADCIDUI 2	15:0							ADC Ne.			2 ~ 3 1.02)							0000
0040		31:16								sult Word 3		3<31.0>)							0000
3070	ADCIDOI 3	15:0							ADC Ne.			3531.02)							0000
90B0	ADC1BUE4	31:16							ADC Res	sult Word 4	(ADC1BUE	4<31.0>)							0000
0000	1.0010011	15:0							7120110		(7.201201	1.01.07							0000
9000	ADC1BUE5	31:16							ADC Res	sult Word 5	(ADC1BUE	5<31.0>)							0000
0000	1.2012010	15:0		ADC Result word 5 (ADC IBUF5<31:0>)														0000	
9000	ADC1BUF6	31:16							ADC Res	sult Word 6	(ADC1BUE	6<31.0>)							0000
0020		15:0							1.201.00		(,	• • • • • •							0000
90E0	ADC1BUF7	31:16							ADC Res	sult Word 7	(ADC1BUF	7<31:0>)							0000
		15:0									(, ,							0000
90F0	ADC1BUF8	31:16							ADC Res	sult Word 8	(ADC1BUF	8<31:0>)							0000
		15:0							1.001.00		(,								0000
9100	ADC1BUF9	31:16							ADC Res	sult Word 9	(ADC1BUF	9<31:0>)							0000
2.00		15:0							1.2 0 1.00										0000
Leger	nd: x = u	nknowr	n value on F	Reset: — =	unimpleme	nted, read a	s '0'. Rese	t values are	shown in h	exadecimal									

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details. Note 1:

NOTES:

	_	-	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)									
			Operatir	Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial								
DC CHARAG	CIERISI	105	-40°C \leq TA \leq +85°C for Industrial									
			-40°C \leq TA \leq +105°C for V-temp									
Param. No.	Typ. ⁽²⁾	Max.	Units	its Conditions								
PIC32MX370 Devices Only												
Power-Dow	n Curren	it (IPD) (N	lote 1)									
DC40k	55	95	μΑ	-40°C								
DC40I	81	95	μΑ	+25°C	Base Bower Down Current							
DC40n	281	450	μΑ	+85°C	Base Fower-Down Current							
DC40m	559	895	μA	+105°C								
PIC32MX47	0 Device	s Only			·							
Power-Dow	n Curren	it (IPD) (N	lote 1)									
DC40k	33	78	μΑ	-40°C								
DC40o	33	78	μA	0°C(5)								
DC40I	49	78	μΑ	+25°C	Raso Rower Down Current							
DC40p	281	450	μA	+70°C ⁽⁵⁾								
DC40n	281	450	μΑ	+85°C								
DC40m	559	895	μA	+105°C								
PIC32MX33	0/350/37	0/430/45	0/470 Dev	vices								
Module Diff	erential	Current										
DC41e	6.7	20	μA	3V	Watchdog Timer Current: ΔIWDT (Note 3)							
DC42e	29.1	50	μA	3V RTCC + Timer1 w/32 kHz Crystal: AIRTCC (Note 3								
DC43d	1000	1200	μA	3V	ADC: Aladc (Notes 3,4)							

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: The test conditions for IPD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- **5:** 120 MHz commercial devices only (0°C to +70°C).

TABLE 31-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CH4	ARACTERIS	TICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp								
Param. No.	Symbol	Charac	teristics ⁽²⁾	-	Min.	Max.	Units	Conditions				
TA10	ТтхН	TxCK High Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15			
			Asynchronous, with prescaler		10	_		ns				
TA11	A11 TTXL TxCK Synchronous Low Time with prescale Asynchronou with prescale		ous, aler	[(12.5 ns or 1 Трв)/N] + 25 ns	_		ns	Must also meet parameter TA15				
			nous, aler	10	_		ns	—				
TA15	ΤτχΡ	TxCK Input Period	Synchrono with presc	ous, aler	[(Greater of 25 ns or 2 Трв)/N] + 30 ns	_		ns	VDD > 2.7V			
					[(Greater of 25 ns or 2 Трв)/N] + 50 ns	_		ns	VDD < 2.7V			
			Asynchronous, with prescaler		20	_	_	ns	VDD > 2.7V (Note 3)			
					50	_		ns	VDD < 2.7V (Note 3)			
OS60 FT1 SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by set TCS bit (T1CON<1>))			tting	32	_	100	kHz	_				
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	external Tx0 Timer	CK	_		1	Трв	—			

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

A	C CHARACTERI	ISTICS ⁽²)	Standa (unles Operat	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
ADC Input	ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration					
AN0-AN14	1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC					
	Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX CHX ANX OF VREF- ANX OF VREF- ANX OF VREF-					
AN15-AN27	400 ksps ⁽¹⁾	154 ns	1000 ns	500Ω	3.0V to 3.6V	ANX CHX ADC					

TABLE 31-36: 10-BIT CONVERSION RATE PARAMETERS ſ

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.