

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128h-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX330/350/370/430/450/470

					Re	mappak	ole Pe	riphe	rals	s)										
Device	Pins	Packages	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers/Capture/Compare ⁽²⁾	UART	SPI/I ² S	External Interrupts ⁽³⁾	10-bit 1 Msps ADC (Channel	Analog Comparators	USB On-The-Go (OTG)	CTMU	1²C	РМР	RTCC	DMA Channels (Programmable/Dedicated)	I/O Pins	JTAG	Trace
PIC32MX330F064H	64	QFN, TQFP	64+12	16	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX330F064L	100 124	TQFP VTLA	64+12	16	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX350F128H	64	QFN, TQFP	128+12	32	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F128L	100 124	TQFP VTLA	128+12	32	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX350F256H	64	QFN, TQFP	256+12	64	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F256L	100		256+12	64	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX370F512H	64	QFN,	512+12	128	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX370F512L	100	TQFP	512+12	128	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
	124	VTLA																		
PIC32MX430F064H	64	QFN, TQFP	64+12	16	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX430F064L	100	TQFP	64+12	16	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA																		
PIC32MX450F128H	64	QFN, TQFP	128+12	32	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F128HB (see Note 4)	64	QFN, TQFP	128+12	32	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F128L	100	TQFP	128+12	32	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA	-	-	_													-		
PIC32MX450F256H	64	QFN, TQFP	256+12	64	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	Ν
PIC32MX450F256L	100	TQFP	256+12	64	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA		•••	•••	0.0.0	Ŭ		Ŭ		_	•		-				0.		
PIC32MX470F512H	64	QFN, TQFP	512+12	128	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX470F512I	100	TQFP	512+12	128	51	5/5/5	5	2/2	5	28	2	v v	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA	2.2.12			0.010	Ľ							_		<u> </u>			•	
PIC32MX470F512LB	100	TQFP	512+12	128	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
(see Note 4)	124	VTLA	-																	

TABLE 1:PIC32MX330/350/370/430/450/470 CONTROLLER FAMILY FEATURES

Note 1: All devices feature 12 KB of Boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

4: This PIC32 device is targeted to specific audio software packages that are tracked for licensing royalty purposes. All peripherals and electrical characteristics are identical to their corresponding base part numbers

Device Pin Tables

TABL	E 2: PIN NAMES FOR 64-PIN DEVICES		
64	-PIN QFN ^(1,2,3,4) AND TQFP ^(1,2,3,4) (TOP VIEV	V)	
PI PI PI PI	C32MX330F064H C32MX350F128H C32MX350F256H C32MX370F512H		
	64	1	
		(4)	64
	QFN	(+)	TQFP
Pin #	Full Pin Name	Pin	# Full Pin Name
1	AN22/RPE5/PMD5/RE5	33	RPF3/RF3
2	AN23/PMD6/RE6	34	RPF2/RF2
3	AN27/PMD7/RE7	35	RPF6/SCK1/INT0/RF6
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	36	SDA1/RG3
5	AN17/C1INC/RPG7/PMA4/RG7	37	SCL1/RG2
6	AN18/C2IND/RPG8/PMA3/RG8	38	VDD
7	MCLR	39	OSC1/CLKI/RC12
8	AN19/C2INC/RPG9/PMA2/RG9	40	OSC2/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	RPD8/RTCC/RD8
11	AN5/C1INA/RPB5/RB5	43	RPD9/RD9
12	AN4/C1INB/RB4	44	RPD10/PMCS2/RD10
13	PGED3/AN3/C2INA/RPB3/RB3	45	RPD11/PMCS1/RD11
14	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	46	RPD0/RD0
15	PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN6/RPB6/RB6	49	AN24/RPD1/RD1
18	PGED2/AN7/RPB7/CTED3//RB7	50	AN25/RPD2/RD2
19	AVdd	51	AN26/RPD3/RD3
20	AVss	52	RPD4/PMWR/RD4
21	AN8/RPB8/CTED10//RB8	53	RPD5/PMRD/RD5
22	AN9/RPB9/CTED4/PMA7/RB9	54	RD6
23	TMS/CVREFOUT/AN10/RPB10/CTED11//PMA13/RB10	55	RD7
24	TDO/AN11/PMA12/RB11	56	VCAP
25	Vss	57	VDD
26	VDD	58	RPF0/RF0
27	TCK/AN12/PMA11/RB12	59	RPF1/RF1
28	TDI/AN13/PMA10/RB13	60	PMD0/RE0
29	AN14/RPB14/CTED5/PMA1/RB14	61	PMD1/RE1
30	AN15/KPB15/OCFB/CTED6/PMA0/RB15	62	AN20/PMD2/RE2
31		63	RPE3/GTPLS/PMD3/RE3
32		64	ANZ1/MD4/RE4
NOTE	 The KETT plus can be used by remappable peripherals. See 1 	able 1 10r	the available peripherals and Section 12.3 "Peripheral Pin

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx), with the exception of RF6, can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O 2: Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

RPF6 (pin 35) is only available for output functions. 4:

TABLE 4: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

			· · · · · · · · · · · · · · · · · · ·								
10	100-PIN TQFP (TOP VIEW) ^(1,2,3)										
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L										
			100 1								
Pin #	Full Pin Name	Pin #	Full Pin Name								
71	RPD11/PMCS1/RD11	86	Vdd								
72	RPD0/RD0	87	RPF0/PMD11/RF0								
73	SOSCI/RPC13/RC13	88	RPF1/PMD10/RF1								
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1								
75	Vss	90	RPG0/PMD8/RG0								
76	AN24/RPD1/RD1	91	TRCLK/RA6								
77	AN25/RPD2/RD2	92	TRD3/CTED8/RA7								
78	AN26/RPD3/RD3	93	PMD0/RE0								
79	RPD12/PMD12/RD12	94	PMD1/RE1								
80	PMD13/RD13	95	TRD2/RG14								
81	RPD4/PMWR/RD4	96	TRD1/RG12								
82	RPD5/PMRD/RD5	97	TRD0/RG13								
83	PMD14/RD6	98	AN20/PMD2/RE2								
84	PMD15/RD7	99	RPE3/CTPLS/PMD3/RE3								

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e[®], is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	EBASE	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration register 1.
16	Config2	Configuration register 2.
16	Config3	Configuration register 3.
17-22	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

4.2 Bus Matrix Registers

TABLE 4-2: BUS MATRIX REGISTER MAP

ess		Ð										Bits							
Virtual Addi (BF88_#	Virtual Add (BF88_# Registe Name		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	—	_	_	_	BMXCHEDMA	—	_	—	_	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000 BIVIACOIN	BIMACON	15:0	—	_	_	_	_	_	_	-	_	BMXWSDRM		_	—	В	MXARB<2:0>		0047
2010		31:16	—	_	_	_	_	—	_	_	—	_	_	_	_		—	—	0000
2010	DIVIADA /	15:0 BMXDKPBA<15:0>								0000									
		31:16	—	_	—	—		—			_	—		—	—		—	—	0000
2020	BIVIADODBA	15:0									BM	XDUDBA<15:0>							0000
2030	(1) גפסו וחעאפ	31:16	—	_	_	_	_	—	_	-	_	—		—	-		—	_	0000
2030	DIVINDOFDA	15:0									BM	XDUPBA<15:0>							0000
2040	BMYDRMS7	31:16		RMYDRMSZ<31:05															
2040	DIVIDUTIVIOZ	15:0		-	_	_		-			DIVI.	XD1102 31.02		_	-				xxxx
2050		31:16	_		—	—	_		_	_	_	—	_	—		BMXPUPBA	<19:16>		0000
2000		15:0 BMXPUPBA<15:0>									0000								
2060	BMYDEMS7	31:16									BM	XPEM97-31.05							xxxx
2000		15:0									Divi	Xi T MOZ 31.02							xxxx
2070	BMXBOOTS7	31:16									BM	(BOOTS7<31.0)							0000
2070 BMXBOOTS	DIVINDOUTION	15:0									לואום								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	—	—	—	_	_	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0					RDWR	[DMACH<2:0>	•

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
01.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	DMAADDR<31:24>										
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:10	DMAADDR<23:16>										
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	DMAADDR<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				DMAADD	R<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

PIC32MX330/350/370/430/450/470

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC)<1:0>	WBO ⁽¹⁾	—	_	BITO ⁽¹⁾
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	—	_	_	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	—	_	(CRCCH<2:0>	•

Legend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit⁽¹⁾

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial - 1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

12.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

12.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

12.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

12.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 12-4: PORTB REGISTER MAP

ess		Bits																	
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	ANSEL B	31:16	_	_	—	—	—	—	—	_	_	—	—	_	_	_		—	0000
0100	ANOLLD	15:0	ANSELB15	ANSELB14	ANSELB13	ANSELB12	ANSELB11	ANSELB10	ANSELB9	ANSELB8	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	FFFF
6110	TRISB	31:16	_	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
00		15:0	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	xxxx
6120	PORTB	31:16		—					—	_		—	—	_		_			0000
		15:0	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
6130	LATB	31:16	_	—	—	—	—	—	—	—	_	—	_	_	—	—			0000
		15:0	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
6140	ODCB	31:16	_	—	—	—	—	—	—	—	_	—	_	_	—	—			0000
		15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	XXXX
6150	CNPUB	31:16	_	—	—	—	—	—	—	—	_	—	_	_	—	—			0000
		15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	XXXX
6160	CNPDB	31:16	_	—	—	—	—	—	—	—	_	—	_	_	—	—			0000
	-	15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	XXXX
6170	CNCONB	31:16	_	_	—	_	—	_	_	_	_	—	_	_	_	_	—		0000
		15:0	ON	—	SIDL	—	—	—	_	—	_	—	—	—	—	—	—		0000
6180	CNENB	31:16	_	_	—	_	—	_	—	—	_	—	—	_	—	—	_		0000
		15:0	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	XXXX
0.100	ONOTATO	31:16	—	—	—		—		—	—	_	—	—	_	_	—			0000
6190	CNSTAFB	15:0	CN STATB15	CN STATB14	CN STATB13	CN STATB12	CN STATB11	CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	xxxx

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-8: PORTD REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX350F256H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, PIC32MX470F512H DEVICES ONLY

ess	Bits																		
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300		31:16	_	—	—	—	—	—	—	—	—	—	_	_	—	—	_	—	0000
0000	ANOLLD	15:0	_	—	—	—	—	—	—	—	—	—	—	—	ANSELD3	ANSELD2	ANSELD1	—	000E
6310	TRISD	31:16	_		—	—	—		—	—	—		—	—	—		—		0000
0010	TRIOD	15:0	_	—	—	—	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	xxxx
5320	PORTD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
0020		15:0	_	—	—	—	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	LATD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
	0.0	15:0	_	—	—	—	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6340	ODCD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
00.0	0000	15:0	_	—	—	—	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	xxxx
6350	CNPUD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
	0.11 00	15:0	_	—	—	—	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	xxxx
6360	CNPDD	31:16	_	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	0000
	0.11 00	15:0	_	—	—	—	CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	xxxx
6370	CNCOND	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	0.100.15	15:0	ON		SIDL	—	—	_	—	_		—	—	_	—	—	—	—	0000
6380	CNEND	31:16	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
0000	ONLIND	15:0	—	—	—	—	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	xxxx
		31:16	_		—	—	—		—	—		—	—	—	—	—	—	—	0000
6390	CNSTATD	15:0	_	—	—	—	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	xxxx

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGIS	TER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)									
bit 17	SPIFE: F	rame Sync Puls	e Edge Select bit (Framed SPI mode only)									
	1 = Fran	ne synchronizati	on pulse coincides with the first bit clock									
1.11.40		ne synchronizati	on pulse precedes the first bit clock									
bit 16		-: Enhanced Buf	ter Enable bit ⁽²⁾									
	1 - Enna	anced Buffer mo	de is disabled									
bit 15		Perinheral On h	it(1)									
bit io	1 = SPI	Peripheral is ena	abled									
	0 = SPI	Peripheral is dis	abled									
bit 14	Unimple	Unimplemented: Read as '0'										
bit 13	SIDL: St	op in Idle Mode I	bit									
	1 = Disc	1 = Discontinue operation when CPU enters in Idle mode										
	0 = Con	tinue operation i	n Idle mode									
bit 12	DISSDO	Disable SDOx	pin bit									
	1 = SDC	Dx pin is not used	d by the module. Pin is controlled by associated PORT register									
bit 11		22 16 - 22/16 Pi	t Communication Select hite									
DIL 11-	When Al	JDFN = 1:										
	MODE32	2 MODE16	Communication									
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame									
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame									
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame									
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame									
		$\frac{\text{JDEN} = 0}{\text{NODE10}}$	O manufaction									
	MODE32	MODE16	Communication 32-bit									
	1 0	1	16-bit									
	0	0	8-bit									
bit 9	SMP: SF	PI Data Input Sar	nple Phase bit									
	Master m	node (MSTEN =	<u>1):</u>									
	1 = Inpu	t data sampled a	at end of data output time									
	0 = Inpu Slave mo	t data sampled a $de (MSTEN = 0$	at mode of data output time									
	SMP value	ue is ignored wh	en SPI is used in Slave mode. The module always uses SMP = 0.									
bit 8	CKE: SF	PI Clock Edge Se	elect bit ⁽³⁾									
	1 = Seria	al output data ch	anges on transition from active clock state to Idle clock state (see CKP bit)									
	0 = Seri	al output data ch	anges on transition from Idle clock state to active clock state (see CKP bit)									
bit 7	SSEN: S	lave Select Ena	ble (Slave mode) bit									
	$1 = \frac{SSX}{SSX}$	pin used for Sla	ve mode									
hit 6	0 - 33X	pin not used for	slave mode, pin controlled by port function.									
DILO	1 = Idle	state for clock is	a high level: active state is a low level									
	0 = Idle	state for clock is	a low level; active state is a high level									
bit 5	MSTEN:	Master Mode E	nable bit									
	1 = Mas	ter mode										
	0 = Slav	e mode										
	4 \A <i>C</i>											
Note		sing the 1:1 PBC	LK divisor, the user software should not read or write the peripheral's SFRs in the roly following the instruction that clears the medule's ON bit									
	JIJULN 2. This hit?		en when the ON hit = 0									
4	2. 1115 UIL (2. This bit i		En when the ON Dit = 0. a Framed SDI mode. The user should program this bit to (a) for the Framed SDI.									
•	mode (F	RMEN = 1).	e riamed or rimode. The user should program this bit to 0 for the riamed SPI									
	4: When A	UDEN = 1. the S	PI module functions as if the CKP bit is equal to '1'. regardless of the actual value									
	4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.											

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0					
31:24	—	—	—	—	—	—	—	ADM_EN					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:10	ADDR<7:0>												
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1					
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT					
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0					
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA					

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

zogonai			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.

bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)

- 1 = Transmit buffer is full
- 0 = Transmit buffer is not full, at least one more character can be written

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽³⁾ 11111111 = Alarm will trigger 256 times

00000000 = Alarm will trigger one time

The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	CH0NB	—	—	CH0SB<4:0>								
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CH0NA ⁽³⁾	—	—	CH0SA<4:0>								
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	—	—	—	—	—	—	-				
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
7:0					_	_	_					

REGISTER 23-4: AD1CHS: ADC INPUT SELECT REGISTER

CHONB: Negative Input Select bit for Sample B

Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL
bit 30-29	Unimplemented: Read as '0'
bit 28-24	CH0SB<4:0>: Positive Input Select bits for Sample B
	 11110 = Channel 0 positive input is Open⁽¹⁾ 11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽²⁾ 11100 = Channel 0 positive input is IVREF⁽³⁾ 11011 = Channel 0 positive input is AN27
	•
	•
	•
	00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
bit 23	CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽³⁾
	1 = Channel 0 negative input is AN10 = Channel 0 negative input is VREFL
bit 22-21	Unimplemented: Read as '0'
bit 20-16	CH0SA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting 11110 = Channel 0 positive input is Open ⁽¹⁾ 11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾ 11100 = Channel 0 positive input is IVREF ⁽³⁾ 11011 = Channel 0 positive input is AN27
	•
	•
	00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
bit 15-0	Unimplemented: Read as '0'
Note 1: 2:	This selection is only used with CTMU capacitive and time measurement. See Section 26.0 "Charge Time Measurement Unit (CTMU) " for more information.

3: See Section 25.0 "Comparator Voltage Reference (CVREF)" for more information.

25.1 Control Register

TABLE 25-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess	. 0		e Bits															ú	
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	_	_	-	—	-	_	_	—	—	_	—	_	_	—	_	_	0000
9000	CVRCON	15:0	ON	_	—	_	—	_	—	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	
31:24	—	—	—	—	—	—	—	—	
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P	
23:10	—	—	—	—	—	FF	PLLODIV<2:()>	
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P	
15:8	UPLLEN ⁽¹⁾	—	—	—	_	UPLLIDIV<2:0> ⁽¹⁾		.(1)	
7.0	r-1	r-1 R/P-1		R/P-1	r-1	R/P	R/P	R/P	
7:0	—	F	PLLMUL<2:0	>	—	FPLLIDIV<2:0>			

DEVCFG2: DEVICE CONFIGURATION WORD 2 REGISTER 28-3:

Legend:	r = Reserved bit	P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-19 Reserved: Write '1'

bit 15

bit 7

bit 18-16 FPLLODIV<2:0>: Default PLL Output Divisor bits

- 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 UPLLEN: USB PLL Enable bit⁽¹⁾ 1 = Disable and bypass USB PLL 0 = Enable USB PLL bit 14-11 Reserved: Write '1' bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits⁽¹⁾ 111 = 12x divider 110 = 10x divider 101 = 6x divider100 = 5x divider 011 = 4x divider 010 = 3x divider 001 = 2x divider 000 = 1x dividerReserved: Write '1' bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier 011 = 18x multiplier 010 = 17x multiplier 001 = 16x multiplier 000 = 15x multiplier
- bit 3 Reserved: Write '1'

Note 1: This bit is available on PIC32MX4XX devices only.

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

30.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temp. Range	Max. Frequency				
Characteristic	(in Volts)	(in °C)	PIC32MX330/350/370/430/450/470				
DC5	2.3-3.6V ⁽¹⁾	-40°C to +85°C	100 MHz				
DC5b	2.3-3.6V ⁽¹⁾	-40°C to +105°C	80 MHz				
DC5c	2.3-3.6V ⁽¹⁾	0°C to +70°C	120 MHz				

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Commercial Temperature Devices					
Operating Junction Temperature Range	TJ	0		+115	°C
Operating Ambient Temperature Range	TA	0	—	+70	°C
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
V-temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD	Pint + Pi/o			W
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(Tj — Τα)/θja			W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θJA	28		°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θJA	47	—	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θJA	43	—	°C/W	1
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θJA	43	—	°C/W	1
Package Thermal Resistance, 124-pin VTLA	θJA	21	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.