

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128h-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

REGIST	ER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)								
bit 9-8	IS1<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0								
bit 7-5	Unimplemented: Read as '0'								
bit 4-2	IP0<2:0>: Interrupt Priority bits								
	<pre>111 = Interrupt priority is 7</pre>								
	001 = Interrupt priority is 1 000 = Interrupt is disabled								
bit 1-0	ISO<1:0>: Interrupt Subpriority bits								
	<pre>11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0</pre>								
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.								

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

PIC32MX330/350/370/430/450/470

REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	—	—			—	—	-	—						
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
	—	—	_	_	—	—	_	—						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15.0	—	—			—	—	-	—						
7.0	R/WC-0, HS	U-0	R/WC-0, HS											
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF						

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state is detected
 - 0 = No change in ID state is detected

bit 6 T1MSECIF: 1 Millisecond Timer bit

- 1 = 1 millisecond timer has expired
- 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1millisecond, but different from last time
- 0 = USB line state has not been stable for 1 millisecond

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level

bit 2 SESENDIF: B-Device VBUS Change Indicator bit

- 1 = A change on the session end input was detected
- 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input is detected
 - 0 = No change on the session valid input is detected

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_	—	_	—	_	—	_	_	_	—	—	—	_	_	—	—	0000
0210	11100	15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	—	—	—	—	TRISC4	TRISC3	TRISC2	TRISC1	—	xxxx
6220	PORTC	31:16		_	_			—			_		—	—	_	_	—	_	0000
0220	1 OKTO	15:0	RC15	RC14	RC13	RC12	_	—	_	—	—	—	—	RC4	RC3	RC2	RC1	—	xxxx
6230	LATC	31:16	_	_	_	_	-	—	_	_	_	_	—	—	_	_	—	—	0000
0230	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	—	_	_	_	_	_	LATC4	LATC3	LATC2	LATC1	—	xxxx
6240	ODCC	31:16	_	—	_	—		_				_	_	_	-	-	_	—	0000
0240		15:0	ODCC15	ODCC14	ODCC13	ODCC12		—			_	—	—	ODCC4	ODCC3	ODCC2	ODCC1	—	xxxx
6250	CNPUC	31:16		-	-	_		—			_	—	—	-	-	-	_	—	0000
0250	CINFUC	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	—	-	-	CNPUC4	CNPUC3	CNPUC2	CNPUC1	—	xxxx
6260	CNPDC	31:16	-	_	_	—	—	—	—	—	—	-	-	-	—	—	_	—	0000
0200	CINFDC	15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	-	-	CNPDC4	CNPDC3	CNPDC2	CNPDC1	—	xxxx
6270	CNCONC	31:16	-	_	_	—	—	—	—	—	—	-	-	-	—	—	_	—	0000
0270	CINCOINC	15:0	ON	_	SIDL	—	—	—	—	—	—	-	-	-	—	—	_	—	0000
6280	CNENC	31:16	_	_		_	_	—	—	_				_	_	_	_	—	0000
0200	GNEING	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	—	—	_				CNIEC4	CNIEC3	CNIEC2	CNIEC1	—	xxxx
6200	CNSTATC	31:16	_			_	_	—	—	_				_	_	_	_	—	0000
0290	CINSTALC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12		_		-	_		_	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	—	xxxx

TABLE 12-5: PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-16:PORTG REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess		6								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	_	-	_	_	_		—	_	_	—			_	—	_	_	0000
0000	ANSELG	15:0		-	-	-	-		ANSELG9	ANSELG8	ANSELG7	ANSELG6			_	—	—	—	01C0
6610	TRISG	31:16	_	-	_	_	_		—	—	-	—	_	_	—	—	_	—	0000
0010	TRISO	15:0	_	_	_	_	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	_	_	xxxx
6620	PORTG	31:16	_		-	_	-		_	_		—	_		_	—	_	_	0000
0020	FURIO	15:0	_		-	_	-		RG9	RG8	RG7	RG6	_		RG3 ⁽²⁾	RG2 ⁽²⁾	_	_	xxxx
6630	LATG	31:16	_		-	—			—	—		—	-		—	—	—	—	0000
0030		15:0	_	—	—	—	—	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	—	—	xxxx
6640	ODCG	31:16	_	—	—	—	—	_	—	—	_	—	_	_	—	—	—	—	0000
0040	0000	15:0	_	—	—	—	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	—	—	xxxx
6650	CNPUG	31:16	—	_	—	—	—		—	—		—	—		—	—	_	—	0000
0000		15:0	—	_	—	—	—		CNPUG9	CNPUG8	CNPUG7	CNPUG6	—		CNPUG3	CNPUG2	_	—	xxxx
6660	CNPDG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0000		15:0	—	_	—	—	_		CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	_	CNPDG3	CNPDG2	_	—	xxxx
6670	CNCONG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0070	01100110	15:0	ON	_	SIDL	—	_		—	_		—	—	_	—	—	_	—	0000
6680	CNENG	31:16	—	_	—	—	_		—	—		—	—	_	—	—	_	—	0000
0000	ONLING	15:0	—	_	—	—	_		CNIEG9	CNIEG8	CNIEG7	CNIEG6	—	_	CNIEG3	CNIEG2	_	—	xxxx
		31:16	—	_	—	—	—		—	_	_	—	—		—	—	_	—	0000
6690	CNSTATG	15:0	—	-	_	—	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	—		CN STATG3	CN STATG2	—	—	xxxx

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

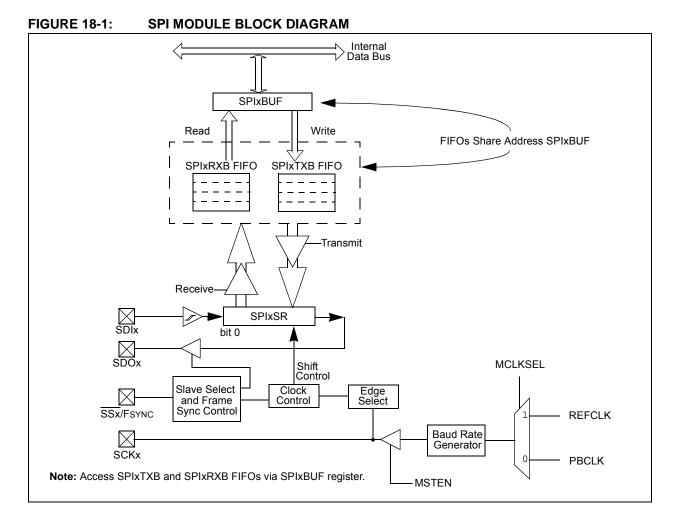
15.1 Watchdog Timer Control Registers

DS60001185F-page	
е —	
78	

TABLE 15-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		æ	Bits															s	
Virtual Addres (BF80_#)	(BF80_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	WDTCON	31:16	_	_	_	_	-	-	—	—	_	—	—	_	_	_	—	—	0000
0000	WDICON	15:0	.00 ON — — — — SWDTPS<4:0> WDTWINEN WDTCLR 00											0000					

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. Some of the key features of the SPI module are:

- · Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during CPU Sleep and Idle mode
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	U-0	U-0	U-0	R-0 R-0		R-0	R-0	R-0					
31:24		_	_	RXBUFELM<4:0>									
23:16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
23.10		_	—		TXBUFELM<4:0>								
15.0	U-0	U-0	U-0	R/C-0, HS	R/C-0, HS R-0		U-0	R-0					
15:8		—	_	FRMERR	SPIBUSY	—	_	SPITUR					
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0					
7:0	SRMT	SPIROV	SPIRBE	_	SPITBE		SPITBF	SPIRBF					

REGISTER 18-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware						
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error is detected
 - 0 = No Frame error is detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.

- bit 5 **SPIRBE:** RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR)
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

REGISTE	ER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	1 = Receive buffer has overflowed0 = Receive buffer has not overflowed

- bit 0 URXDA: Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

ess		0								Bi	ts										
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
7000	PMCON	31:16		—	_	—	—	_	_	_		_	_	—	_	_	_	_	0000		
1000	1 MOON	15:0	ON	—	- SIDL ADRMUX<1:0> PMPTTL PTWREN PTRDEN CSF<1:0> ALP CS2P CS1P - WRSP RDSP 0												0000				
7010	PMMODE	31:16	—	—													0000				
7010	7010 T MINODE	15:0	BUSY IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITB<1:0> WAITM<3:0> WA									WAITE	<1:0>	0000							
7020	PMADDR	31:16	_	_		_	_	_		_	_	_		_					0000		
7020	PINADUR	15:0	CS2	CS1							ADDR	<13:0>									
7030	PMDOUT	31:16								DATAOU	T-31.0>								0000		
7030	FINDOUT	15:0								DAIAOU	1~31.02								0000		
7040	PMDIN	31:16								DATAIN	<31.0>								0000		
7040		15:0								DATAIN	~51.02								0000		
7050	PMAEN	31:16	_	_	-	—	—	—	_	—	—	—	_	_	-	_	—	—	0000		
7050	FINALIN	15:0								PTEN<	<15:0>								0000		
7060	PMSTAT	31:16	_	—	—	_	_	—	—	—	_	_	—	—	—	—	—	_	0000		
1000	FINISTAL	15:0	IBF	IBF IBOV IB3F IB2F IB1F IB0F OBE OBUF OB3E OB2E OB1E OB0E BFBF																	
Legend	1 • v = 1	inknow	n value on	Reset:	unimpleme	nted read	as 'n' Rese	at values an	shown in l	nexadecima	1										

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	_	_	—	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	_	—	—	—	—	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾				~12.05			
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾			ADDR	<13.02	10/2 25/17/9/1 24/1 0 U-0 U 0 U-0 U -0 R/W-0 R/M		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	ADDR<7:0>								

REGISTER 21-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 ADDR<15>: Destination Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Destination Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

NOTES:

26.1 Control Register

TABLE 26-1: CTMU REGISTER MAP

ess													ŝ						
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1 200	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	G2POL EDG2SEL<3:0> — -			_	0000		
A200	CTWOCON	15:0	ON	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG		ITRIM<5:0> IRNG<1:0:					<1:0>	0000	

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 28-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess										Bits					Bits													
Virtual Addres (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset									
2550	DEVCFG3	31:16	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	_	_		—		_		—	FS	RSSEL<2:0	>	xxxx									
2660	DEVCEGS	15:0								USERID<1	5:0>								xxxx									
2554	DEVCFG2	31:16	—	—		—	—	—	—		—		—		-	FP	LLODIV<2:0	>	xxxx									
2664	DEVCFGZ	15:0	UPLLEN ⁽¹⁾	—		_	—	UPL	LIDIV<2:0	(1)	—	FF	PLLMUL<2:	0>	—	FF	PLLIDIV<2:0>	>	xxxx									
2550	DEVCFG1	31:16	—	_	_	—	_	_	FWDTWI	NSZ<1:0>	FWDTEN	WINDIS	_		١	NDTPS<4:0)>		xxxx									
2660	DEVCEGI	15:0	FCKSM	<1:0>	FPBD	IV<1:0>	_	OSCIOFNC	POSCM	OD<1:0>	IESO	_	FSOSCEN	_	_	F	NOSC<2:0>		xxxx									
2550	DEVCFG0	31:16	—	—	_	CP	—	_	—	BWP	_		_			PWP	<7:4>		xxxx									
2650	DEVCEGO	15:0		PWP<	<3:0>		—	—		-		_	—	ICESE	L<1:0>	JTAGEN	DEBUG	<1:0>	xxxx									

Legend: x = unknown value on Reset; - = reserved, write as '1'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

TABLE 28-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

ess		e								Bi	ts								ú
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000		31:16	_	_	—	—	_	—	—	_	—	_	—	_	—	_	_	—	0000
F200	CFGCON	15:0	_	—	IOLOCK	PMDLOCK	_	_	—	—	—	—	—	_	JTAGEN	TROEN	_	TDOEN	000B
F220	DEVID	31:16		VER	<3:0>							DEVID	<27:16>						xxxx ⁽¹⁾
F220	DEVID	15:0								DEVID	<15:0>								xxxx ⁽¹⁾
E220	SYSKEY	31:16	SYSKEY<31:0>												0000				
F230	STORET	15:0								STORE	1~51.0~								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3)	-0.3V to +6.0V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum output current sourced/sunk by any 4x I/O pin	15 mA
Maximum output current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sunk by all ports	150 mA
Maximum current sourced by all ports (Note 2)	150 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

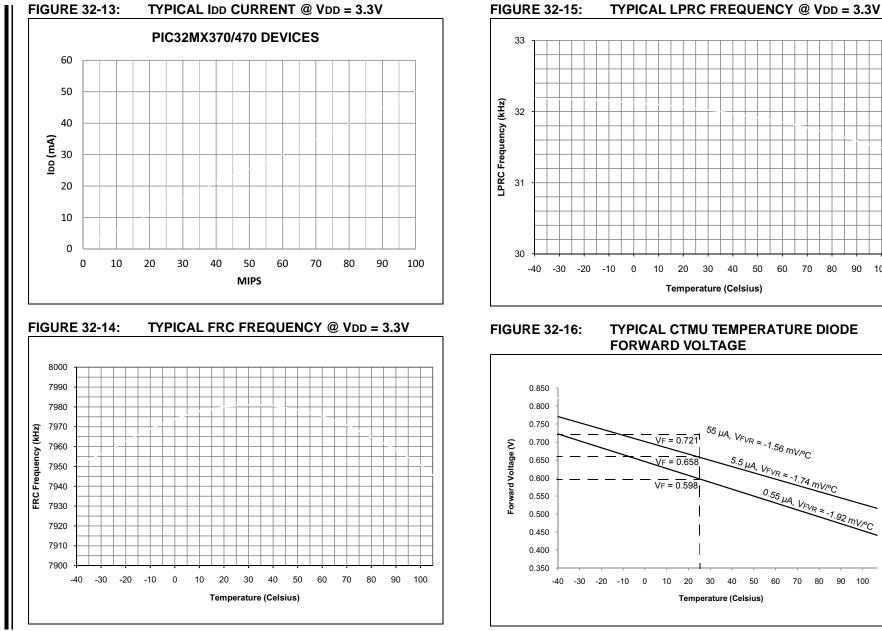
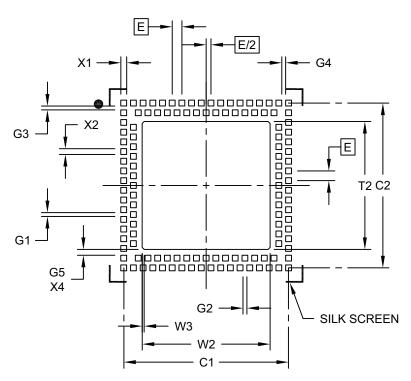

DC CHARACT	ERISTICS		(unless o	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Parameter No.	Typical ⁽²⁾	Maximum	Units	Units Conditions							
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)											
DC30a	1	2.2	mA	4 MHz							
DC31a	3	5	mA	10 MHz (Note 3)							
DC32a	5	7	mA		20 MHz (Note 3)						
DC33a	8	13	mA		40 MHz (Note 3)						
DC34a	11	18	mA		60 MHz (Note 3)						
DC34b	15	24	mA		80 MHz						
DC34c	19	29	mA	1	100 MHz, $-40^{\circ}C \le TA \le +8$	35°C					
DC34d	25	34	mA		120 MHz, $0^{\circ}C \leq TA \leq +7$	D°C					
DC37a	100	—	μA	-40°C							
DC37b	250	_	μA	+25°C	3.3V	LPRC (31 kHz) (Note 3)					
DC37c	380	_	μA	+85°C		(11018-0)					

TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core is halted), program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.



PIC32MX330/350/370/430/450/470

100

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units							
Dimension	MIN	NOM	MAX					
Contact Pitch	E		0.50 BSC					
Pad Clearance	G1	0.20						
Pad Clearance	G2	0.20						
Pad Clearance	G3	0.20						
Pad Clearance	G4	0.20						
Contact to Center Pad Clearance (X4)	G5	0.30						
Optional Center Pad Width	T2			6.60				
Optional Center Pad Length	W2			6.60				
Optional Center Pad Chamfer (X4)	W3		0.10					
Contact Pad Spacing	C1		8.50					
Contact Pad Spacing	C2		8.50					
Contact Pad Width (X124)	X1			0.30				
Contact Pad Length (X124)	X2			0.30				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0959-5