

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128ht-i-rg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

10	100-PIN TQFP (TOP VIEW) ^(1,2,3)										
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L										
		100 1									
Pin #	Full Pin Name	Pin #	Full Pin Name								
71	RPD11/PMCS1/RD11	86	Vdd								
72	RPD0/RD0	87	RPF0/PMD11/RF0								
73	SOSCI/RPC13/RC13										
		88	RPF1/PMD10/RF1								
74	SOSCO/RPC14/T1CK/RC14	88	RPF1/PMD10/RF1 RPG1/PMD9/RG1								
74 75											
	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1								
75	SOSCO/RPC14/T1CK/RC14 Vss	89 90	RPG1/PMD9/RG1 RPG0/PMD8/RG0								
75 76	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1	89 90 91	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6								
75 76 77	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2	89 90 91 92	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7								
75 76 77 78	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3	89 90 91 92 93	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0								
75 76 77 78 79	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4	89 90 91 92 93 94	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12								
75 76 77 78 79 80	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13	89 90 91 92 93 94 95	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14								
75 76 77 78 79 80 81	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4	89 90 91 92 93 94 95 96	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12 TRD0/RG13 AN20/PMD2/RE2								
75 76 77 78 79 80 81 82	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5	89 90 91 92 93 94 95 96 97	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12 TRD0/RG13								

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.

		Pin Numb	er					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description		
CTED4	22	33	B19	1	ST	CTMU External Edge Input 4		
CTED5	29	43	B24	I	ST	CTMU External Edge Input 5		
CTED6	30	44	A29	I	ST	CTMU External Edge Input 6		
CTED7	—	9	B5	I	ST	CTMU External Edge Input 7		
CTED8	—	92	A62	I	ST	CTMU External Edge Input 8		
CTED9	—	60	A40	I	ST	CTMU External Edge Input 9		
CTED10	21	32	A23	Ι	ST	CTMU External Edge Input 10		
CTED11	23	34	A24	Ι	ST	CTMU External Edge Input 11		
CTED12	15	24	A15	I	ST	CTMU External Edge Input 12		
CTED13	14	23	B13	I	ST	CTMU External Edge Input 13		
MCLR	7	13	B7	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.		
AVdd	19	30	A22	Р	Р	Positive supply for analog modules. This pin must be connected at all times.		
AVss	20	31	B18	Р	Р	Ground reference for analog modules		
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	B1, A10, A14, B21, A30, A41, A48, A59, B53	Ρ	_	Positive supply for peripheral logic and I/O pins		
Vcap	56	85	B48	Р	—	Capacitor for Internal Voltage Regulator		
Vss	9, 25, 41	15, 36, 45, 65, 75	A3, B8, B12, A25, B25, A43, B41, A63	Ρ	_	Ground reference for logic and I/O pins		
VREF+	16	29	B17	I	Analog	Analog Voltage Reference (High) Input		
VREF-	15	28	A21	I	Analog	Analog Voltage Reference (Low) Input		

TARI E 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Analog = Analog input O = Output

I = Input

Note 1: This pin is only available on devices without a USB module.

This pin is only available on devices with a USB module. 2:

3: This pin is not available on 64-pin devices.

NOTES:

TABLE 7-2: IN	ITERRUPT REGISTER	MAP (CONTINUED)
---------------	-------------------	-----------------

ess		⁰								Bits												
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets			
10F0	IPC6	31:16	_	_	—	(CMP1IP<2:0>		CMP1IS	S<1:0>	_	_	—	F	CEIP<2:0>		FCEIS	S<1:0>	0000			
101.0	IF CO	15:0	—	_	—		RTCCIP<2:0>		RTCCIS	S<1:0>	_	_	—	FS	SCMIP<2:0	>	FSCMI	S<1:0>	0000			
1100	IPC7	31:16		_	_		U1IP<2:0>		U1IP<2:0>		U1IS<	<1:0>	_	_	_	SPI1IP<2:0>		SPI1IP<2:0>		SPI1IS	6<1:0>	0000
1100	IPC7	15:0		_	_	ι	USBIP<2:0> ⁽²⁾		USBIS<	:1:0> (2)	_	_	_	CMP2IP<2:0>		CMP2IS<1:0> 0		0000				
1110	IPC8	31:16	_	—	—		SPI2IP<2:0>		SPI2IS	<1:0>	_	_	—	PMPIP<2:0>		PMPIS<1:0>		0000				
1110	IPCo	15:0	_	—	—		CNIP<2:0>		CNIS	<1:0>	_	_	—	I2C1IP<2:0>		> I2C1IS<1:0>		6<1:0>	0000			
1100	IPC9	31:16	_	_	_		U4IP<2:0>		U4IS<	<1:0>	_	_	—	l	J3IP<2:0>		U3IS-	<1:0>	0000			
1120	IPC9	15:0		_	_		I2C2IP<2:0>		I2C2IS	<1:0>	_	_	_	l	J2IP<2:0>		U2IS-	<1:0>	0000			
1120	IPC10	31:16	_	—	—	I	DMA1IP<2:0> DMA1IS<1:0> DMA0		MA0IP<2:0	>	DMA0	S<1:0>	0000									
1130	IPCIU	15:0	_	_	_	(CTMUIP<2:0	>	CTMU	S<1:0>	_	_	—	l	J5IP<2:0>		U5IS-	<1:0>	0000			
11.10	IPC11	31:16	_	—	—	—	—	—	—	—	_	_	—	—	—	—	_	_	0000			
1140	IPUTT	15:0	_	-			DMA3IP<2:0	>	DMA3IS	S<1:0>	_	_	_	DI	MA2IP<2:0	>	DMA2I	S<1:0>	0000			

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	-	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	-	-	—	_	_	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	—		_	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHPDAT	7:0>			

REGISTER 10-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

Legend:

=0901141			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CHPDAT<7:0>:** Channel Data Register bits

Pattern Terminate mode: Data to be matched must be stored in this register to allow terminate on match.

All other modes: Unused.

REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—			—	—	-	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	_	_	—	—	_	—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—			—	—	-	—			
7.0	R/WC-0, HS	U-0	R/WC-0, HS								
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF			

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	oit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state is detected
 - 0 = No change in ID state is detected

bit 6 T1MSECIF: 1 Millisecond Timer bit

- 1 = 1 millisecond timer has expired
- 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1millisecond, but different from last time
- 0 = USB line state has not been stable for 1 millisecond

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level

bit 2 SESENDIF: B-Device VBUS Change Indicator bit

- 1 = A change on the session end input was detected
- 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input is detected
 - 0 = No change on the session valid input is detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	-	—	_	-	—	_	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	-	—	_	-	—	_	—	—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0		_	_		_	-		_			
7.0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0			
7:0	ID	—	LSTATE		SESVD	SESEND		VBUSVD			

REGISTER 11-3: U1OTGSTAT: USB OTG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 ID: ID Pin State Indicator bit
 - 1 = No cable is attached or a Type-B cable has been plugged into the USB receptacle
 - 0 = A Type-A cable has been plugged into the USB receptacle
- bit 6 Unimplemented: Read as '0'
- bit 5 LSTATE: Line State Stable Indicator bit
 - 1 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms
 - 0 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms

bit 4 Unimplemented: Read as '0'

- bit 3 SESVD: Session Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A or B device
 - 0 = VBUS voltage is below Session Valid on the A or B device
- bit 2 SESEND: B-Device Session End Indicator bit
 - 1 = VBUS voltage is below Session Valid on the B device
 - 0 = VBUS voltage is above Session Valid on the B device

bit 1 Unimplemented: Read as '0'

- bit 0 VBUSVD: A-Device VBUS Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A device
 - 0 = VBUS voltage is below Session Valid on the A device

REGISTER 11-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—				_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—				_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—				_	_	_
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP	T<3:0>		DIR	PPBI		_

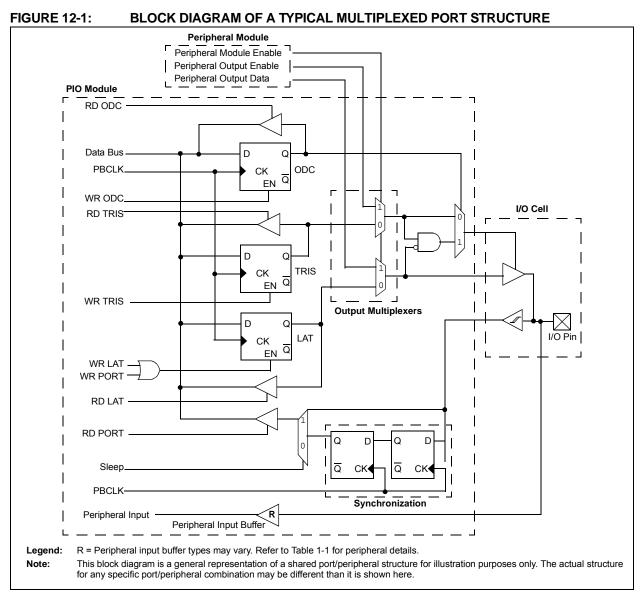
Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	plemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.


12.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. Following are key features of this module:

- · Individual output pin open-drain enable/disable
- · Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

REGISTE	ER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	1 = Receive buffer has overflowed0 = Receive buffer has not overflowed

- bit 0 URXDA: Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	_	—	_	_	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	_	—	_	_	
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾	AMASK<3:0> ⁽³⁾				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	ARPT<7:0> ⁽³⁾								
	•								

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit⁽²⁾

- 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
- 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽³⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved; do not use
- 1011 = Reserved; do not use
- 11xx = Reserved; do not use
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	—	_		
15:0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	ITRIM<5:0>						IRNG<1:0>	

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

3						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

1111 = Reserved

1110 = C2OUT pin is selected

- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source

- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

28.0 SPECIAL FEATURES

This data sheet summarizes the features Note: of the PIC32MX330/350/370/430/450/470 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. (DS60001124) and Section 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- · Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

28.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- · CFGCON: Configuration Control Register

In addition, the DEVID register (Register 28-6) provides device and revision information.

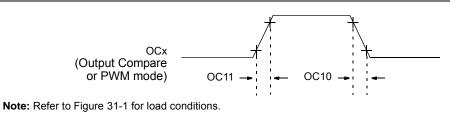
TABLE 31-14: COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Comments	
D300	VIOFF	Input Offset Voltage	—	±7.5	±25	mV	AVDD = VDD, AVSS = VSS
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVdd = Vdd, AVss = Vss (Note 2)
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)
D303	Tresp	Response Time	—	150	400	ns	AVdd = Vdd, AVss = Vss (Notes 1,2)
D304	ON2ov	Comparator Enabled to Output Valid			10	μS	Comparator module is configured before setting the comparator ON bit (Note 2)
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	—

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

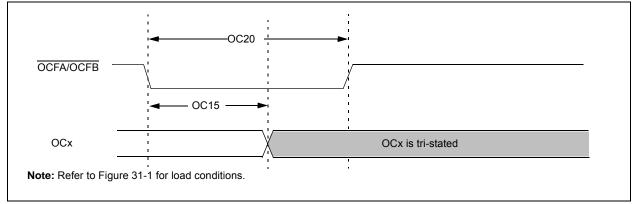
3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.


TABLE 31-18: EXTERNAL CLOCK TIMING REQUIREMENTS

			(unless oth	erwise stat			
AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Operating temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for Commercial} \\ & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4	_	50 50	MHz MHz	EC (Note 4) ECPLL (Note 3)
OS11		Oscillator Crystal Frequency	3		10	MHz	XT (Note 4)
OS12			4		10	MHz	XTPLL (Notes 3,4)
OS13			10		25	MHz	HS (Note 4)
OS14			10	_	25	MHz	HSPLL (Notes 3,4)
OS15			32	32.768	100	kHz	Sosc (Note 4)
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	_	—	_	_	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc		_	ns	EC (Note 4)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	_	0.05 x Tosc	ns	EC (Note 4)
OS40	Тоѕт	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12	—	mA/V	VDD = 3.3V, TA = +25°C (Note 4)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

- 2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.
- **3:** PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.
- 4: This parameter is characterized, but not tested in manufacturing.


TABLE 31-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				for Commercial C for Industrial
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See parameter DO32
OC11	TccR	OCx Output Rise Time	— — — ns See parameter D				See parameter DO31

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 31-28: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commerce} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temperature} \end{array}$					
Param No.	Symbol	Characteristics ⁽¹⁾	Min Typical ⁽²⁾		Max	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns	_
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS (CONTINUED)

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. ⁽²⁾ Max.			Units	Conditions
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тscк + 20		_	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 31-32: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercia} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typical ⁽²⁾ Max. Units Conditions				
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175			ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	5		25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тscк + 20	_	_	ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge			25	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
Clock P	arameter	S					
AD50	TAD	ADC Clock Period ⁽²⁾	65			ns	See Table 31-36
Conver	sion Rate	•					
AD55	TCONV	Conversion Time	_	12 Tad		_	_
AD56	FCNV	Throughput Rate (Sampling Speed) ⁽⁴⁾	_	_	1000	ksps	AVDD = 3.0V to 3.6V
			_	—	400	ksps	AVDD = 2.5V to 3.6V
AD57	TSAMP	Sample Time	2 Tad	_	—	_	—
Timing	Paramete	rs					
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 TAD	—	1.5 TAD	_	-
AD62	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—	_	-
AD63	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	_

TABLE 31-37: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: Refer to Table 31-36 for detailed conditions.

NOTES: