

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128ht-v-rg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4,5)	,				A	34
	, Α17			B13	B29		Conductive Thermal Pad
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L		A1	B1 E	356	B41	A51
	Polarity	ndica	tor	Å	\68		
Package Bump #	Full Pin Name		Package Bump #			Full Pin	Name
B7	MCLR		B32	SDA2	/RA3		
B8	Vss		B33	TDO/F	RA5		
B9	TMS/CTED1/RA0		B34	OSC1	/CLKI/RC12		
B10	RPE9/RE9		B35	No Co	onnect		
B11	AN4/C1INB/RB4		B36	RPA1	4/RA14		
B12	Vss		B37	RPD8	/RTCC/RD8		
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD1	0/PMCS2/RE	010	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0	/RD0		
B15	No Connect		B40	SOSC	O/RPC14/T1	CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss			
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/	RPD2/RD2		
B18	AVss		B43	RPD1	2/PMD12/RD)12	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4	/PMWR/RD4		
B20	AN11/PMA12/RB11		B45	PMD1	4/RD6		
B21	VDD		B46	No Co	onnect		
B22	RPF13/RF13		B47	No Co	onnect		
B23	AN12/PMA11/RB12		B48	VCAP			
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0	/PMD11/RF0		
B25	Vss		B50	RPG1	/PMD9/RG1		
B26	RPD14/RD14		B51	TRCL	K/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0)/RE0		
B28	No Connect]	B53	Vdd			
B29	RPF8/RF8		B54	TRD2	/RG14		
B30	RPF6/SCKI/INT0/RF6		B55	TRD0	/RG13		
B31	SCL1/RG2		B56	RPE3	/CTPLS/PMD	03/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (bump B30) and RPF7 (bump A37) are only remappable for input functions.

4: Shaded package bumps are 5V tolerant.

5: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	7				A3	34
	AL	I		B13	B29		Conductive Thermal Pad
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L		A1	B1 B	56	B41	A51
	Polarity	Indica	tor	A	68		
Package Bump #	Full Pin Name		Package Bump #			Full Pin	Name
B7	MCLR		B32	SDA2	/RA3		
B8	Vss		B33	TDO/F	RA5		
B9	TMS/CTED1/RA0		B34	OSC1	/CLKI/RC12		
B10	RPE9/RE9		B35	No Co	onnect		
B11	AN4/C1INB/RB4		B36	SCL1/	RPA14/RA1	4	
B12	Vss		B37	RPD8	/RTCC/RD8		
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD1	0/SCK1/PM0	CS2/RD10	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0	/INT0/RD0		
B15	No Connect		B40	SOSC	O/RPC14/T	1CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss			
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/	RPD2/RD2		
B18	AVss		B43	RPD1	2/PMD12/RI	012	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4	/PMWR/RD4	ļ	
B20	AN11/PMA12/RB11		B45	PMD1	4/RD6		
B21	VDD		B46	No Co	onnect		
B22	RPF13/RF13		B47	No Co	onnect		
B23	AN12/PMA11/RB12		B48	VCAP			
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0/	PMD11/RF0		
B25	Vss		B50	RPG1	/PMD9/RG1		
B26	RPD14/RD14		B51	TRCL	K/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0	/RE0		
B28	No Connect		B53	Vdd			
B29	RPF8/RF8		B54	TRD2	/RG14		
B30	VUSB3V3		B55	TRD0	/RG13		
B31	D+		B56	RPE3	CTPLS/PMI	D3/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). This document contains device-specific information for PIC32MX330/350/370/430/450/470 devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX330/350/ 370/430/450/470 family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX330/350/370/430/450/470 BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

7.1 Interrupts Control Registers

TABLE 7-2: INTERRUPT REGISTER MAP

ess			Bits																
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000		31:16	_		—		—				—	—	_	—			—	SS0	0000
1000	INTCON	15:0	_	_	_	MVEC	—		TPC<2:0>		—	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT	31:16	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_	0000
1010		15:0	—	—	—	—	—		SRIPL<2:0>		—	—			VEC<5:0)>			0000
1020	IPTMR	31:16 15:0								IPTMR<31:0>							0000		
1000	1500	31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
1030	IF50	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1040	IES1	31:16	U3RXIF	U3EIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	CNGIF	CNFIF	CNEIF	0000
1040	IF31	15:0	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP2IF	CMP1IF	0000
1050	IES2	31:16	_	-	—	-	—				—	—	—	—			—	_	0000
1050	11 02	15:0	_	_	—	_	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	U5TXIF ⁽¹⁾	U5RXIF ⁽¹⁾	U5EIF ⁽¹⁾	U4TXIF	U4RXIF	U4EIF	U3TXIF	0000
1060	IEC0	31:16	FCEIE	RTCCIE	FSCMIE	AD1IE	OC5IE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000
	1200	15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
1070	IEC1	31:16	U3RXIE	U3EIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	CNGIE	CNFIE	CNEIE	0000
		15:0	CNDIE	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1TXIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP2IE	CMP1IE	0000
1080	IEC2	31:16		_	—	_	—	—	—	—	—					—			0000
		15:0		_		_	DMA3IE	DMA2IE	DMA1IE	DMAOIE	CTMUIE	U5TXIE()	U5RXIE ⁽¹⁾	USEIE	U4TXIE	U4RXIE	U4EIE	U3TXIE	0000
1090	IPC0	31:16		_			INT0IP<2:0>		INTOIS	<1:0>			_	C	S1IP<2:0>		CS1IS	S<1:0>	0000
		15:0	_				CSUIP<2:0>			<1:0>		_		(-11P<2:0>		00115	<1:0>	0000
10A0	IPC1	31.10								<1.0>				-				~1.0>	0000
		31.16								<1.0>				0	0210-2:0-		00215	<1.0×	0000
10B0	IPC2	15.0					IC2IP<2:0>		101213	<1.0>				-	T21P<2.0>		T215	<1.0>	0000
		31.16					INT3IP<2:0>		INTSIS	<1:0>				0	C3IP<2.02		00315	<1:02 <1:02	0000
10C0	IPC3	15.0			_		IC3IP<2:0>		IC3IS	<1:0>	_		_	-	T3IP<2:0>		T3IS	<1:0>	0000
		31:16		_			INT4IP<2:0>	0> INT4IS<1:0> OC4IP<2:0		C4IP<2:0>		OC4IS	S<1:0>	0000					
10D0	IPC4	15:0	_	_	_		IC4IP<2:0>				T4IP<2:0>		T4IS	<1:0>	0000				
		31:16	_	_	_		AD1IP<2:0>		AD1IS	<1:0>	_	_	_	OC5IP<2:0>		OC5IS	6<1:0>	0000	
10E0	IPC5	15:0	—	_	—		IC5IP<2:0>		IC5IS•	<1:0>	—	_	_	1	T5IP<2:0>	::0> T5IS<1:0>		<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

REGISTER 8-1:	OSCCON: OSCILLATOR	CONTROL REGISTER
---------------	--------------------	-------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	R/W-y R/W-y		R/W-y	R/W-0	R/W-0	R/W-1		
31.24	—	—	P	LLODIV<2:0	>	FRCDIV<2:0>				
22:16	U-0	R-0 R-1 R/W-y R/		R/W-y	R/W-y R/W-y R/W-y					
23:16	—	SOSCRDY	PBDIVRDY	PBDI\	/<1:0>	P	LLMULT<2:0>	•		
15.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y			
10.0	—		COSC<2:0>		—	NOSC<2:0>				
7:0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0		
7.0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN		

Legend:

y = Value set from Configuration bits on POR

Legenu.	y - value set nom comig		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-27 PLLODIV<2:0>: Output Divider for PLL
 - 111 = PLL output divided by 256
 - 110 = PLL output divided by 64
 - 101 = PLL output divided by 32
 - 100 = PLL output divided by 16
 - 011 = PLL output divided by 8
 - 010 = PLL output divided by 4
 - 001 = PLL output divided by 2
 - 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

REGISTER 11-11: U1CON: USB CONTROL REGISTER (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Reset all Even/Odd buffer pointers to the EVEN BD banks
 - 0 = Even/Odd buffer pointers not being Reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry is enabled
 - 0 = USB module and supporting circuitry is disabled

SOFEN: SOF Enable bit⁽⁵⁾

- 1 = SOF token sent every 1 ms
- 0 = SOF token is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—			_			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	-	—	—	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	-					—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				BDTPTR	H<23:16>			

REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** BDT Base Address bits This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

					OTEN			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
02:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				BDTPTR	U<31:24>			

REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: BDT Base Address bits

This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

ess										Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16		_		_		_	—		_		_	_	_	_	_	—	0000
		15:0	_	_	—	_	—	_	—	_	_	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	xxxx
6520	PORTE	31:16	_	_	—	_	—	_		_	_	—	_	_	—	_	_	_	0000
0520	1 OKII	15:0	-	_	—	_	—	_	_	_	_	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6520		31:16		-	-	_	_	-	—		_	—	—	-	—	—	-	—	0000
0550	LAIF	15:0	_	_	—	_	_	_	_	_	_	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540		31:16	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0040	ODCF	15:0	—	_	_	_	—	_	_	—	_	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	xxxx
GEEO		31:16	—	_	_	_	—	_	_	—	_	_		_	_		_	_	0000
0000	CNPUF	15:0	—	_	_	_	—	_	_	—	_	CNPUF6	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	xxxx
CECO.		31:16	—	_	_	_	—	_	_	—	_	_		_	_		_	_	0000
0000	CNPDF	15:0	—	_	_	_	—	_	_	—	_	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	xxxx
6570		31:16	—	_	—	_	—	_	—	_	_	_	—	_	_	—	_	—	0000
0570	CINCOINF	15:0	ON	_	SIDL	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6500		31:16	—	_	_	_	—	_	_	—	_	—	_	_	_	_	_	_	0000
0000	CINEINF	15:0	—	_	_	_	—	_	_	—	_	—	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	xxxx
		31:16	—	_	_	_	—	_	_	—	_	—		_	_		_	_	0000
6590	CNSTATF	15:0	_	_	_	_	_	_	_	_	_	_	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	xxxx

TABLE 12-13: PORTF REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, AND PIC32MX370F512H DEVICES

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

NOTES:

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 4 **DISSDI:** Disable SDI bit 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

REGISTER 18-3: SPIxSTAT: SPI STATUS REGISTER (CONTINUED)

- bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB is empty
 - 0 = Transmit buffer, SPIxTXB is not empty

Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.

Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

bit 2 Unimplemented: Read as '0'

bit 1 SPITBF: SPI Transmit Buffer Full Status bit

1 = Transmit not yet started, SPITXB is full

0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

bit 0 SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CH0NB	—	—	CH0SB<4:0>							
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CH0NA ⁽³⁾	—	—	CH0SA<4:0>							
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	—	—	—	—	—	—	-			
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_		_		_	_	_				

REGISTER 23-4: AD1CHS: ADC INPUT SELECT REGISTER

CHONB: Negative Input Select bit for Sample B

Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL
bit 30-29	Unimplemented: Read as '0'
bit 28-24	CH0SB<4:0>: Positive Input Select bits for Sample B
	 11110 = Channel 0 positive input is Open⁽¹⁾ 11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽²⁾ 11100 = Channel 0 positive input is IVREF⁽³⁾ 11011 = Channel 0 positive input is AN27
	•
	•
	•
	00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
bit 23	CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽³⁾
	1 = Channel 0 negative input is AN10 = Channel 0 negative input is VREFL
bit 22-21	Unimplemented: Read as '0'
bit 20-16	CH0SA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting 11110 = Channel 0 positive input is Open ⁽¹⁾ 11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾ 11100 = Channel 0 positive input is IVREF ⁽³⁾ 11011 = Channel 0 positive input is AN27
	•
	•
	00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
bit 15-0	Unimplemented: Read as '0'
Note 1: 2:	This selection is only used with CTMU capacitive and time measurement. See Section 26.0 "Charge Time Measurement Unit (CTMU) " for more information.

3: See Section 25.0 "Comparator Voltage Reference (CVREF)" for more information.

25.1 Control Register

TABLE 25-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess			Bits											ú					
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	_	_	_	—	-	_	_	—	—	_	—	_	_	—	_	_	0000
9000	CVRCON	15:0	ON	_	—	_	—	_	—	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Тур. ⁽²⁾	Max.	Units		Conditions					
PIC32MX35	0F256 Do	evices O	nly							
Power-Dow	n Currer	nt (IPD) (N	lote 1)							
DC40k	38	80	μA	-40°C						
DC40I	57	80	μΑ	+25°C	Base Power-Down Current					
DC40n	220	352	μΑ	+85°C						
DC40m	513	749	μA	+105°C						
PIC32MX45	0F256 De	evices O	nly							
Power-Dow	n Currer	nt (IPD) (N	lote 1)							
DC40k	26	42	μA	-40°C						
DC40o	26	42	μA	0°C (5)						
DC40I	26	42	μA	+25°C	Base Power Down Current					
DC40p	250	352	μA	+70°C ⁽⁵⁾						
DC40n	250	352	μA	+85°C						
DC40m	513	749	μA	+105°C	+105°C					

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: The test conditions for IPD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- · RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: 120 MHz commercial devices only (0°C to +70°C).

TABLE 31-19: PLL CLOCK TIMING SPECIFICATIONS

AC CHA	RACTERI	STICS	Standard ((unless ot) Operating t	Operatir h erwise æmpera	ng Condi stated) ture 0°0 -40	tions: 2 C ≤ TA ≤)°C ≤ TA)°C ≤ TA	.3V to 3 +70°C fc ≤ +85°C ≤ +105°	. 6∨ or Commercial ⊱for Industrial C for V-temp	
Param. No.	Symbol	Characteristi	Min.	Typical	Max.	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		3.92	—	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes	
OS51a	Fsys	On-Chip VCO System	n Frequency	60		120	MHz	Commercial devices	
OS51b				60	—	100	MHz	Industrial devices	
OS51c				60	_	80	MHz	V-temp devices	
OS52	TLOCK	PLL Start-up Time (Lock Time)		_		2	ms	_	
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumu	ulative)	-0.25	_	+0.25	%	Measured over 100 ms period	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

TABLE 31-20: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions			
Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾									
F20b	FRC	-0.9		+0.9	%	_			

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

AC CHA	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commerc} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics		Min.	Max.	Units	Conditions			
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	_			
		Hold Time	400 kHz mode	600		ns				
			1 MHz mode (Note 1)	250		ns				
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—			
			400 kHz mode	0	1000	ns				
			1 MHz mode (Note 1)	0	350	ns				
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus			
			400 kHz mode	1.3	—	μS	must be free before a new			
			1 MHz mode (Note 1)	0.5	_	μS	transmission can start			
IS50	Св	Bus Capacitive Lo		400	pF	—				

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

PIC32MX330/350/370/430/450/470

100

PIC32MX330/350/370/430/450/470

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PIC32 MX 3XX F 064 H B T - XXX I/PT - XXX Example: Microchip Brand PIC32 MX 3XX F 064 H B T - XXX I/PT - XXX Microchip Brand PIC32 MX 3XX F 064 H B T - XXX I/PT - XXX Architecture PIC32 MX 330F064H-I/PT: Architecture PIC32 MX 3X F 064 H B T - XXX I/PT - XXX Architecture PIC32 MX 330F064H-I/PT: General purpose PIC32, 32-bit RISC MCU, 64 KB program memory, Flash Memory Family Filash Memory Size (KB) Pin Count Pin Count Software Targeting Pin Count Speed Pin Count Package Package Package Package Pattern Pattern							
Flash Memory Far	nily						
Architecture	MX = 32-bit RISC MCU core						
Product Groups	3XX = General purpose microcontroller family 4XX = General purpose with USB microcontroller family						
Flash Memory Family	F = Flash program memory						
Program Memory Size	064 = 6 4KB 128 = 128KB 256 = 256KB 512 = 512KB						
Pin Count	H = 64-pin L = 100-pin						
Software Targeting	B = Targeted for Bluetooth Audio Break-in devices						
Speed	blank = up to 100 MHz 120 = up to 120 MHz						
Temperature Range	blank = 0°C to +70°C (Commercial) I = -40°C to +85°C (Industrial) V = -40°C to +105°C (V-Temp)						
Package	MR = 64-Lead (9x9x0.9 mm) QFN with 5.40x5.40 Exposed Pad (Plastic Quad Flat) RG = 64-Lead (9x9x0.9 mm) QFN with 4.7x4.7 Exposed Pad (Plastic Quad Flat) PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array)						
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample						