

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128l-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ess		0		Bits															
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1050		31:16		—	_	(CMP1IP<2:0>	>	CMP1IS	S<1:0>	_	—	—	F	CEIP<2:0>		FCEIS	<1:0>	0000
IUFU	IFC0	15:0	—	—	—		RTCCIP<2:0>	>	RTCCIS	S<1:0>		—	—	FS	SCMIP<2:0	>	FSCMI	S<1:0>	0000
1100		31:16	_	_	_		U1IP<2:0>		U1IS<	<1:0>	_	—	—	S	PI1IP<2:0>		SPI1IS	6<1:0>	0000
1100	IFC/	15:0	—	—	—	l	USBIP<2:0>(2	2)	USBIS<	:1:0> (2)		—	—	CI	MP2IP<2:0	>	CMP2	S<1:0>	0000
1110		31:16	_	_	_		SPI2IP<2:0>		SPI2IS	<1:0>	—	—	—	P	MPIP<2:0>		PMPIS	6<1:0>	0000
1110	IFCo	15:0	_	_	_		CNIP<2:0>		CNIS	<1:0>	—	—	—	12	2C1IP<2:0>		12C115	\$<1:0>	0000
1100		31:16	_	_	_		U4IP<2:0>		U4IS<	<1:0>	—	—	—	I	U3IP<2:0>		U3IS-	<1:0>	0000
1120	IFC9	15:0	—	—	—		I2C2IP<2:0>		I2C2IS	<1:0>		—	—	-	U2IP<2:0>		U2IS·	<1:0>	0000
1120		31:16	—	—	—		DMA1IP<2:0>	>	DMA1IS	S<1:0>		—	—	DI	MA0IP<2:0	>	DMA0	S<1:0>	0000
1130	IFCIU	15:0	_	_	_	(CTMUIP<2:0	>	CTMU	S<1:0>	—	—	—	I	U5IP<2:0>		U5IS-	<1:0>	0000
1140		31:16	—	—	—	—	—	—	-	-		—	—	-	—	—	-	_	0000
1140	FOI	15:0	_	_	_		DMA3IP<2:0>	>	DMA3IS	S<1:0>	_	—	_	DI	MA2IP<2:0	>	DMA2	S<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

PIC32MX330/350/370/430/450/470

FIGURE 8-1: PIC32MX330/350/370/430/450/470 FAMILY CLOCK DIAGRAM

USB PLL is available on PIC32MX4XX devices only. 5.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾
 - 1 = Token packet is rejected due to CRC5 error
 - 0 = Token packet is accepted
 - EOFEF: EOF Error Flag bit^(3,5)
 - 1 = EOF error condition is detected
 - 0 = No EOF error condition
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check is failed
 - 0 = PID check is passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABLE 12-6: PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

Bits																			
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_	_	—	_		—	_		_			_	_	_			0000
0210	TRISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	—	—	—	_	_	_	_	—	_	_	xxxx
6220	PORTO	31:16	_	_	_	_	_	—	_	—	_	_	_	_	_	_	_	—	0000
0220	TORIC	15:0	RC15	RC14	RC13	RC12	_	—	_	—	—		_	_	_	—		—	xxxx
6230	LATC	31:16	—	_	_	_	_	—	_	—	—		_	_	_	—		—	0000
0200	LATO	15:0	LATC15	LATC14	LATC13	LATC12	_	—	—	—	—	—	—	—	—	—	—	—	xxxx
6240	ODCC	31:16	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_	—	0000
02.0	0200	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	_	—	—	_	—	—	—	—	_	_	xxxx
6250	CNPUC	31:16	_	_	—	_		—	_		_					_			0000
		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	—	—	—	_		—	—	—	—		—	XXXX
6260	CNPDC	31:16	_	_		_	—	—	—	—	_	—	—	—	—	_	—	—	0000
		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	_	—	_	_	_	—	—	_	_	—	XXXX
6270	CNCONC	31:16	_			—	—	—	_		—	_	—	—	—	—	_	_	0000
		15:0	ON		SIDL	—	—	—	_		—	_	—	—	—	—	_	_	0000
6280	CNENC	31:16					—	—	_		—	_	—	—	—	—	_	_	0000
		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	—	_		_	_	—	—	—	_	_	_	XXXX
6290	CNSTATC	31:16	_	—	_	_	—	—	_		_	_	—	—	—	_	_	_	0000
	-	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	—	—	—	—	—	—	—	—	—	—	—	—	XXXX

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 12-14: PORTF REGISTER MAP FOR PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess										В	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISE	31:16	_	—	—	—	—		—		-	—	—			l			0000
		15:0			—	_	—	—	—	—	_	—	TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	xxxx
6520	PORTE	31:16				_	_	_	—	_	_	—	-	—	—	_		—	0000
		15:0		—		—	-	—	—	—	_	—	RF5	RF4	RF3	_	RF1	RF0	XXXX
6530	LATE	31:16		—		—	-	—	—	—	_	—	—	—	—	_	-	—	0000
		15:0		—		—	-	—	—	—	_	—	LATF5	LATF4	LATF3	_	LATF1	LATF0	XXXX
6540	ODCE	31:16	_	—	-	—	-	—	—	_	—	—	-	—	—	-	-	—	0000
00.0	020.	15:0	—	—	—	—	—	—	—	—	_	—	ODCF5	ODCF4	ODCF3	-	ODCF1	ODCF0	xxxx
6550	CNPUE	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	-	-	—	0000
	0.1. 0.	15:0	—	—	—	—	—	—	—	—	_	—	CNPUF5	CNPUF4	CNPUF3	-	CNPUF1	CNPUF0	xxxx
6560	CNPDF	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	-	-	—	0000
	0.1. 5.	15:0	—	—	—	—	—	—	—	—	_	—	CNPDF5	CNPDF4	CNPDF3	-	CNPDF1	CNPDF0	xxxx
6570	CNCONE	31:16	—	—	—	—	—		_		_	—	—	_	—	_	—	—	0000
0070	oncon	15:0	ON	—	SIDL	—	—	—	—	—	_	—	—	_	—	—	—	—	0000
6580	CNENE	31:16	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
0000	ONLIN	15:0		—		—	—	—	—	—		—	CNIEF5	CNIEF4	CNIEF3	_	CNIEF1	CNIEF0	xxxx
		31:16		—		—	—		—			—			—	_		—	0000
6590	CNSTATF	15:0	_	—	_	—	_	—	—	—	_	—	CN STATF5	CN STATF4	CN STATF3	_	CN STATF1	CN STATF0	xxxx

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 12-3:	CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER ($x = A - G$)
----------------	--

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	-	_	_	_	-	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = CPU Idle Mode halts CN operation
 - 0 = CPU Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER (CONTINUED)

- bit 3 T32: 32-Bit Timer Mode Select bit⁽²⁾
 - 1 = Odd numbered and even numbered timers form a 32-bit timer
 - 0 = Odd numbered and even numbered timers form a separate 16-bit timer
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timer Clock Source Select bit⁽³⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

PIC32MX330/350/370/430/450/470

16.1 Control Register

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24								—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—		—	—		—	
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
	ON"	-	SIDL	—	—	-	FEDGE	C32
7:0			R/W-U			R/W-U		R/W-U
		1015	1.02	1007	ICDINL		10101-2.02	
l egend:								
R = Readable	∍ hit		W = Writable	e hit	U = Unimpl	emented hit		
-n = Bit Value	at POR: ('0'	'1' x = unkno	wn)		P = Program	nmable bit	r = Reserve	d bit
	, at i oit. (0,				i – i logiai			u bit
bit 31-16	Unimplemen	nted: Read as	s'0'					
bit 15	ON: Input Ca	pture Module	Enable bit ⁽¹⁾)				
	1 = Module is	s enabled						
	0 = Disable a	ind reset mod	ule, disable o	clocks, disable	e interrupt ge	eneration and	allow SFR n	nodifications
bit 14	Unimplemen	nted: Read as	s 'O'					
bit 13	SIDL: Stop in	Idle Control	bit					
	1 = Halt in Cl	PU Idle mode	00111					
	0 = Continue	to operate in	CPU Idle mo	ode				
bit 12-10	Unimplemen	ited: Read as	S '0'				、	
bit 9	FEDGE: First	t Capture Ede	ge Select bit ((only used in	mode 6, ICN	1<2:0> = 110)	
	0 = Capture f	falling edge fi	rst					
bit 8	C32: 32-bit C	apture Selec	t bit					
	1 = 32-bit tim	er resource c	apture					
	0 = 16-bit tim	er resource c	apture					
bit 7	ICTMR: Time	er Select bit (I	Does not affe	ct timer selec	tion when C	32 (ICxCON<	<8>) is '1')	
	0 = Timer3 is 1 = Timer2 is	the counter s the counter s	source for ca source for ca	pture pture				
bit 6-5	ICI<1:0>: Inte	errupt Contro	l bits					
	11 = Interrup	ot on every fo	urth capture	event				
	10 = Interrup	ot on every th	ird capture ev	vent				
	01 = Interrup	of on every se	apture event	event				
bit 4	ICOV: Input (Capture Over	flow Status F	lag bit (read-	onlv)			
	1 = Input capture overflow has occurred							
bit 3	ICBNE: Input	t Capture Buf	fer Not Empt	v Status bit (r	ead-onlv)			
	1 = Input cap	ture buffer is	not empty: ai	t least one m	ore capture v	alue can be	read	
	0 = Input cap	ture buffer is	empty					

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
31:24	—	—	—		R	XBUFELM<4:	0>			
22:16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
23.10	—	—	—		T)	KBUFELM<4:0)>			
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0		
15:8	—	—	—	FRMERR	SPIBUSY	—	—	SPITUR		
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0		
7:0	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF		

REGISTER 18-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error is detected
 - 0 = No Frame error is detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.

- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR)
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24		—	—	—	—	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	—	—	—	—	—				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾				<12:05						
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾		ADDR<13:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				ADDR	<7:0>							

REGISTER 21-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 ADDR<15>: Destination Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Destination Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	-	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Set by Hardware	SC = Cleared by software			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 IBxF: Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)0 = No underflow occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	_	—	
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	ON ⁽¹⁾	—	—	—	—	—	—	—	
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	CVROE	CVRR	CVRSS	CVR<3:0>				

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Voltage Reference On bit⁽¹⁾
 - 1 = Module is enabled

Setting this bit does not affect other bits in the register.

- 0 = Module is disabled and does not consume current
 - Clearing this bit does not affect the other bits in the register.
- bit 14-7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit
 - 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin
- bit 5 CVRR: CVREF Range Selection bit
 - 1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size
 - 0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
- bit 4 **CVRSS:** CVREF Source Selection bit
 - 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)
 - 0 = Comparator voltage reference source, CVRSRC = AVDD AVSS

bit 3-0 **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits

<u>When CVRR = 1:</u> CVREF = (CVR<3:0>/24) • (CVRSRC) <u>When CVRR = 0:</u> CVREF = 1/4 • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	EDG1MOD	EDG1POL		EDG1S	EDG2STAT	EDG1STAT		
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	—	—		
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	ON	N – CTMUSIDL T		TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	ITRIM<5:0>							<1:0>

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

1111 = Reserved

1110 = C2OUT pin is selected

- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source

- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

	ER 20-1. CTMOCON. CTMO CONTROL REGISTER (CONTINUE
bit 24	EDG1STAT: Edge 1 Status bit
	Indicates the status of Edge 1 and can be written to control edge source
	1 = Edge 1 has occurred
	0 = Edge 1 has not occurred
bit 23	EDG2MOD: Edge 2 Edge Sampling Select bit
	1 = Input is edge-sensitive
h:+ 00	0 = Input is level-sensitive
DIT 22	EDG2POL: Edge 2 Polarity Select bit
	1 = Edge 2 programmed for a positive edge response
h:+ 04 40	0 = Euge z programmed for a negative euge response
DIL 21-18	
	1111 = Reserved
	1110 = C2OOT pin is selected 1101 = C1OUT pin is selected
	1100 = PBCLK clock is selected
	1011 = IC3 Capture Event is selected
	1010 = IC2 Capture Event is selected
	1001 = IC1 Capture Event is selected
	1000 = CTED13 pin is selected
	0111 = CTED12 pin is selected
	0101 = CTED10 pin is selected
	0100 = CTED9 pin is selected
	0011 = CTED1 pin is selected
	0010 = CTED2 pin is selected
	0001 = OC1 Compare Event is selected
	0000 = Timer1 Event is selected
bit 17-16	Unimplemented: Read as '0'
bit 15	ON: ON Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	CIMUSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
h:+ 40	0 = Continue module operation in Idle mode
DICIZ	
	1 = Enables edge delay generation
hit 11	EDGEN: Edge Enable bit
	1 - Edges are not blocked
	r = Euges are hound blocked $0 = Edges are blocked$
	bit 24 bit 23 bit 22 bit 21-18 bit 17-16 bit 15 bit 14 bit 13 bit 12 bit 12 bit 11

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

DC CHA	ARACTE	RISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for Commercial} \\ & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symb.	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
		Input Leakage Current (Note 3)						
DI50	lil	I/O Ports	—	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance	
DI55		MCLR ⁽²⁾	_		<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	—	_	<u>+</u> 1	μA	$VSS \le VPIN \le VDD,$ XT and HS modes	
							Pins with Analog functions. Exceptions: [N/A] = 0 mA max	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (7,10)	mA	Digital 5V tolerant desig- nated pins. Exceptions: [N/A] = 0 mA max	
							Digital non-5V tolerant desig- nated pins. Exceptions: [N/A] = 0 mA max	

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (Vss 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

TABLE 31-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				Staı (unl Ope	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Charac	teristics ⁽²⁾	-	Min.	Typical	Max.	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15
			Asynchronous, with prescaler		10	_		ns	
TA11	TTXL TXCK Synchronous Low Time with prescale		ous, aler	ıs, [(12.5 ns or 1 TPB)/N] ler + 25 ns			ns	Must also meet parameter TA15	
			Asynchronous, with prescaler		10	_		ns	—
TA15	ΤτχΡ	TxCK Input Period	Synchrono with presc	ous, aler	[(Greater of 25 ns or 2 Трв)/N] + 30 ns	_		ns	VDD > 2.7V
					[(Greater of 25 ns or 2 Трв)/N] + 50 ns	_		ns	VDD < 2.7V
			Asynchror with presc	nous, aler	20	_	_	ns	VDD > 2.7V (Note 3)
					50	_		ns	VDD < 2.7V (Note 3)
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by sett TCS bit (T1CON<1>))		tting	32	_	100	kHz	_
TA20	TCKEXTMRL	Delay from External TxC Clock Edge to Timer Increment		CK	_		1	Трв	—

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-260A Sheet 1 of 2