

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX330/350/370/430/450/470

					Rei	nappab	ole Pe	ripher	als	s)										
Device	Pins	Packages	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers/Capture/Compare ⁽²⁾	UART	SPI/I ² S	External Interrupts ⁽³⁾	10-bit 1 Msps ADC (Channels)	Analog Comparators	USB On-The-Go (OTG)	CTMU	1²C	РМР	RTCC	DMA Channels (Programmable/Dedicated)	I/O Pins	JTAG	Trace
PIC32MX330F064H	64	QFN, TQFP	64+12	16	37	5/5/5	4	2/2	5	28	2	Ν	Y	2	Y	Y	4/0	53	Y	N
PIC32MX330F064L	100 124	TQFP VTLA	64+12	16	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX350F128H	64	QFN, TQFP	128+12	32	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F128L	100 124	TQFP VTLA	128+12	32	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX350F256H	64	QFN, TQFP	256+12	64	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F256L	100 124	TQFP	256+12	64	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX370F512H	64	QFN, TQFP	512+12	128	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX370F512L	100 124	TQFP VTLA	512+12	128	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX430F064H	64	QFN, TQFP	64+12	16	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX430F064L	100 124	TQFP VTLA	64+12	16	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX450F128H	64	QFN, TQFP	128+12	32	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F128HB (see Note 4)	64	QFN, TQFP	128+12	32	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F128L	100 124	TQFP VTLA	128+12	32	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX450F256H	64	QFN, TQFP	256+12	64	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F256L	100 124	TQFP VTLA	256+12	64	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX470F512H	64	QFN, TQFP	512+12	128	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX470F512L	100 124	TQFP VTLA	512+12	128	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX470F512LB (see Note 4)	100 124	TQFP VTLA	512+12	128	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y

TABLE 1:PIC32MX330/350/370/430/450/470 CONTROLLER FAMILY FEATURES

Note 1: All devices feature 12 KB of Boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

4: This PIC32 device is targeted to specific audio software packages that are tracked for licensing royalty purposes. All peripherals and electrical characteristics are identical to their corresponding base part numbers

TABLE 7: PIN NAMES FOR 124-PIN DEVICES

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	17				A	A34		
	A	17	l	B13	B29		Conductive Thermal Pad		
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L			B1 Bt	56	B41	A51		
			A1						
	Polarit	y Indica	ator	A	68				
Package Bump #	Full Pin Name		Package Bump #			Full Pin	Name		
A1	No Connect		A38	D-					
A2	RG15		A39	SCL2/F	RA2				
A3	Vss		A40	TDI/CT	ED9/RA4				
A4	AN23/PMD6/RE6		A41	Vdd					
A5	RPC1/RC1		A42		CLKO/RC15				
A6	RPC3/RC3		A43	Vss					
A7	AN16/C1IND/RPG6/SCK2/PMA5/RG6		A44	SDA1/F	RPA15/RA15	5			
A8	AN18/C2IND/RPG8/PMA3/RG8		A45	RPD9/F	209				
A9	AN19/C2INC/RPG9/PMA2/RG9		A46		PMCS1/RD	11			
A10	VDD		A47		RPC13/RC				
A11	RPE8/RE8		A48	VDD					
A12	AN5/C1INA/RPB5/VBUSON/RB5		A49	No Cor	nect				
A13	PGED3/AN3/C2INA/RPB3/RB3		A50	No Cor					
A14	VDD		A51	No Cor	nect				
A15	PGEC1/AN1/RPB1/CTED12/RB1		A52		RPD1/RD1				
A16	No Connect		A53	AN26/F	RPD3/RD3				
A17	No Connect		A54	PMD13					
A18	No Connect		A55	-	PMRD/RD5				
A19	No Connect		A56	PMD15	-				
A20	PGEC2/AN6/RPB6/RB6		A50 A57	No Cor					
A20 A21	VREF-/CVREF-/PMA7/RA9	_		No Cor					
A21 A22	AVDD	_	A58 A59	VDD					
A22 A23	AN8/RPB8/CTED10/RB8	\dashv	A59 A60		MD10/RF1				
A23 A24	CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	_	A60 A61	-	PMD8/RG0				
A24 A25	Vss	_	A61 A62		TED8/RA7				
A25	TCK/CTED2/RA1	_	A62	Vss					
A20	RPF12/RF12		A64	PMD1/	RF1				
A28	AN13/PMA10/RB13	\dashv	A65	TRD1/F					
A29	AN15/RPB15/OCFB/CTED6/PMA0/RB15	-	A66		MD2/RE2				
A30	VDD		A67	_	MD2/RE2				
A31	RPD15/RD15	-	A68	No Cor					
A32	RPF5/PMA8/RF5		B1	VDD					
A33	No Connect	\dashv	B1 B2		RPE5/PMD5	/RE5			
A33 A34	No Connect	_	B2 B3	-	MD7/RE7				
A34 A35	USBID/RF3	_	B3 B4	RPC2/F					
A35 A36	RPF2/RF2	_			CTED7/RC4				
700		1	B5						

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX330/350/370/430/ 450/470 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

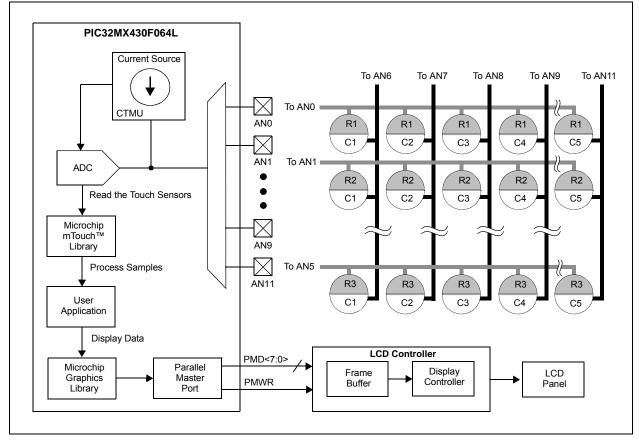
- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.8 "External Oscillator Pins")

The following pins may be required:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

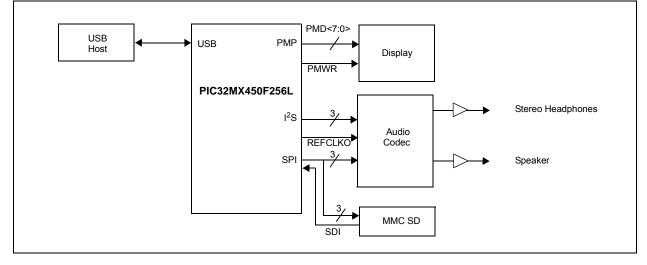
Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors


The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.


2.11 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-6, Figure 2-7, and Figure 2-8.

FIGURE 2-6: CAPACITIVE TOUCH SENSING WITH GRAPHICS APPLICATION

FIGURE 2-7: AUDIO PLAYBACK APPLICATION

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

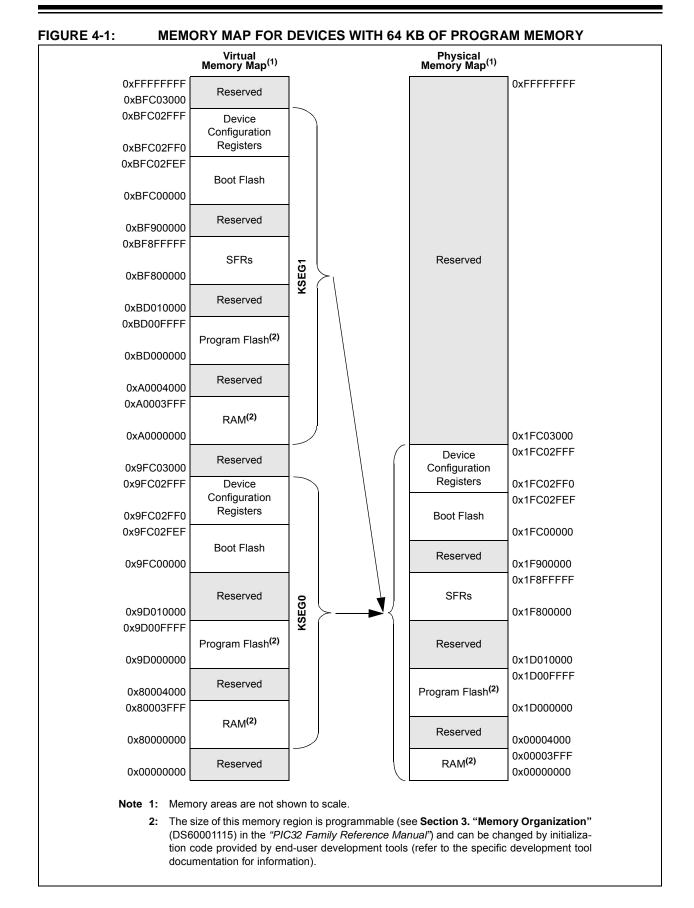
TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".


3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX330/350/370/430/450/470 family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Memory" (DS60001121), Program which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX330/350/370/430/450/470 devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾
 - 1111 = Reserved; do not use
 - 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

9.2 Control Registers

TABLE 9-1: PREFETCH REGISTER MAP

ess										Bit	s								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	CHECON ⁽¹⁾	31:16	—	_	—	—		_	—	—	_		—		—	—		CHECOH	0000
1000		15:0	—	_		—	_	_	DCSZ	<1:0>	—		PREFE	N<1:0>	—	P	FMWS<2:0)>	0007
4010	CHEACC ⁽¹⁾		CHEWEN	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	—	_	—	—	—	_	—	—	—		—	—		CHEID	X<3:0>		00xx
4020	CHETAG ⁽¹⁾	31:16	LTAGBOOT	—	—	—	—	—	—	—				LTAG<	:23:16>				xxx0
1020				LTAG<15:4> LVALID LLOCK LTYPE — xxx2															
4030	CHEMSK ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
		15:0		LMASK<15:5> — — — — — xxxx															
4040	CHEW0	31:16	CHEW0<31:0>										XXXX						
		15:0												XXXX					
4050	CHEW1	31:16								CHEW1	<31:0>								xxxx
		15:0																	xxxx
4060	CHEW2	31:16								CHEW2	<31:0>								xxxx
		15:0																	XXXX
4070	CHEW3	31:16								CHEW3	<31:0>								XXXX
		15:0			_	_	_	_					CH	IELRU<24:1	16>				XXXX
4080	CHELRU	31:16 15:0							_	CHELRU	<15.0>		CI		10-				0000
										CHELRU	<15.0>								0000
4090	CHEHIT	31:16 15:0								CHEHIT	<31:0>								xxxx
																			XXXX
40A0	CHEMIS	31:16 15:0		CHEMIS<31:0>										xxxx					
		31:16												xxxx					
40C0	CHEDEADT	15:0		CHEPFABT<31:0>									xxxx xxxx						
Legen			n value on Re	sot = u	nimplomon	tod road as	: '0' Reset	values are	shown in h	avadocimal									XXXX

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

bit 4 **CHDHIF:** Channel Destination Half Full Interrupt Flag bit

- 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
- 0 = No interrupt is pending
- bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
 - 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
 - 0 = No interrupt is pending
- bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
 - 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
 - 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending
- bit 0 CHERIF: Channel Address Error Interrupt Flag bit
 - 1 = A channel address error has been detected
 - Either the source or the destination address is invalid.
 - 0 = No interrupt is pending

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 4 **DISSDI:** Disable SDI bit 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

20.1 **Control Registers**

TABLE 20-1: UART1 THROUGH UART5 REGISTER MAP

ess)		Ð								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	U1MODE ⁽¹⁾	31:16	_		-	_	_			_	_	_	_	_		_			0000
0000	UTMODE: /	15:0	ON		SIDL	IREN	RTSMD		UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6010	U1STA ⁽¹⁾	31:16	—	_	—	_	—	_	_	ADM_EN				ADDR	<7:0>				0000
0010	01317	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6020	U1TXREG	31:16	—	_	—	_	—	_	_	—	_	_	—	—	_	—	_	_	0000
0020	UTIXILEO	15:0	—	_	—	_	_	_	_	TX8				Transmit	Register				0000
6030	U1RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	ONVILO	15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6040	U1BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	—	0000
0010	OTDICO	15:0							Bau	d Rate Gene	erator Pres	caler							0000
6200	U2MODE ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	ON	—	SIDL	IREN	RTSMD	—	UEN		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6210	U2STA ⁽¹⁾	31:16	—	—	—	_	—	—	—	ADM_EN			1	ADDR					0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6220	U2TXREG	31:16	_		_	_	_	_		—	_	—	—		—	_	—	_	0000
		15:0	_		_	_	_	_		TX8				Transmit	Register				0000
6230	U2RXREG	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6240	U2BRG ⁽¹⁾	31:16	_	_	_	_	—	—		—	_	—	—	_	—	_	—	—	0000
		15:0							Bau	d Rate Gene	erator Pres	caler							0000
6400	U3MODE ⁽¹⁾	31:16	_	_	—	_	—	_	_	—		—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	-	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6410	U3STA ⁽¹⁾	31:16	—	—	—	-	-	-	-	ADM_EN			10051	ADDR	-		0505		0000
		15:0	UTXISE	:L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	=L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6420	U3TXREG	31:16	_	_		—	_	_	_	— 	—	—	—	— —	—	-	—	—	0000
		15:0	-	_	—	_	_	_		TX8				Transmit	-				0000
6430	U3RXREG	31:16	_	_	_	_	_	_	_	-	—	—	—	—	—	—	—	—	0000
		15:0	- - - - RX8 Receive Register 0000																

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV registers" for more informa-Note 1: tion.

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	_	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	-	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	—	SIDL	IREN	RTSMD	_	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal

bit 14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - 1 = $\overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode

bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМИ	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
2C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX330/350/ 370/430/450/470 Controller Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0		
31:24	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_		—	_		
23:16	U-0	U-0	U-0	U-0	U-0	R/P	R/P	R/P		
23.10	—	—	—	—	—	F٤	SRSSEL<2:0	>		
15.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
15:8	USERID<15:8>									
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
7:0	USERID<7:0>									

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **FVBUSONIO:** USB VBUS_ON Selection bit 1 = VBUSON pin is controlled by the USB module

- 0 = VBUSON pin is controlled by the OSB module0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 IOL1WAY: Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27-19 Unimplemented: Read as '0'

bit 18-16 FSRSSEL<2:0>: Shadow Register Set Priority Select bit

These bits assign an interrupt priority to a shadow register.

- 111 = Shadow register set used with interrupt priority 7
- 110 = Shadow register set used with interrupt priority 6
- 101 = Shadow register set used with interrupt priority 5
- 100 = Shadow register set used with interrupt priority 4
- O11 = Shadow register set used with interrupt priority 3
- 010 = Shadow register set used with interrupt priority 2
- 001 = Shadow register set used with interrupt priority 1
- 000 = Shadow register set used with interrupt priority 0
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

IABLE 31-7								
DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
			Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial					
			$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
	(0)		$-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Тур. ⁽²⁾	Max.	Units Conditions					
PIC32MX37	0 Device	s Only						
Power-Down	n Curren	it (IPD) (N	lote 1)					
DC40k	55	95	μA	-40°C				
DC40I	81	95	μA	+25°C	Base Power-Down Current			
DC40n	281	450	μA	+85°C				
DC40m	559	895	μA	+105°C				
PIC32MX47	0 Device	s Only			· · · · · · · · · · · · · · · · · · ·			
Power-Dow	n Curren	it (IPD) (N	lote 1)					
DC40k	33	78	μA	-40°C				
DC40o	33	78	μA	0°C(5)				
DC40I	49	78	μA	+25°C	Base Power-Down Current			
DC40p	281	450	μA	+70°C ⁽⁵⁾				
DC40n	281	450	μA	+85°C				
DC40m	559	895	μA	+105°C				
PIC32MX33	0/350/370	0/430/450)/470 Dev	vices				
Module Diffe	erential (Current						
DC41e	6.7	20	μA	3V	Watchdog Timer Current: ΔIWDT (Note 3)			
DC42e	29.1	50	μA	3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)			
DC43d	1000	1200	μA	3V	ADC: Aladc (Notes 3,4)			

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: The test conditions for IPD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- **5:** 120 MHz commercial devices only (0°C to +70°C).

TABLE 31-14: COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	nbol Characteristics		Typical	Max.	. Units Comments		
D300	VIOFF	Input Offset Voltage		±7.5	±25	mV	AVDD = VDD, AVSS = VSS	
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVdd = Vdd, AVss = Vss (Note 2)	
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)	
D303	Tresp	Response Time	—	150	400	ns	AVDD = VDD, AVss = Vss (Notes 1,2)	
D304	ON2ov	Comparator Enabled to Output Valid	-		10	μS	Comparator module is configured before setting the comparator ON bit (Note 2)	
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	—	

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

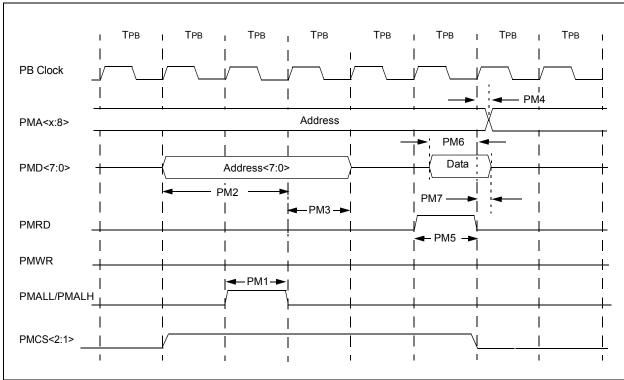
2: These parameters are characterized but not tested.

3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

TABLE 31-35: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS ⁽⁵⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No. Symbol		Characteristics	Min.	Typical	Max.	Units	Conditions		
Device \$	Supply								
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	_	Lesser of VDD + 0.3 or 3.6	V	_		
AD02	AVss	Module Vss Supply	Vss	—	Vss + 0.3	V	_		
Referen	ce Inputs								
AD05	Vrefh	Reference Voltage High	AVss + 2.0	—	AVdd	V	(Note 1)		
AD05a			2.5	—	3.6	V	VREFH = AVDD (Note 3)		
AD06	Vrefl	Reference Voltage Low	AVss	—	VREFH – 2.0	V	(Note 1)		
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	-	AVDD	V	(Note 3)		
AD08	IREF	Current Drain	_	250 —	400 3	μΑ μΑ	ADC operating ADC off		
Analog	Input	·							
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—		
AD13	Vinl	Absolute Vın∟ Input Voltage	AVss – 0.3	—	AVDD/2	V	—		
AD14	Vin	Absolute Input Voltage	AVss – 0.3	—	AVDD + 0.3	V	_		
AD15		Leakage Current	_	+/- 0.001	+/-0.610	μA	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3.3V$ Source Impedance = 10 k Ω		
AD17	Rin	Recommended Impedance of Analog Voltage Source		—	5K	Ω	(Note 1)		
ADC Ac	curacy – N	leasurements with Exter	nal Vref+/Vr	EF-					
AD20c	D20c Nr Resolution		10 data bits		bits		—		
AD21c	INL	Integral Nonlinearity	> -1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.3V		
AD22c	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)		
AD23c	Gerr	Gain Error	> -1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.3V		
AD24n	EOFF	Offset Error	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.3V		
AD25c		Monotonicity	_	—	_	_	Guaranteed		

Note 1: These parameters are not characterized or tested in manufacturing.


2: With no missing codes.

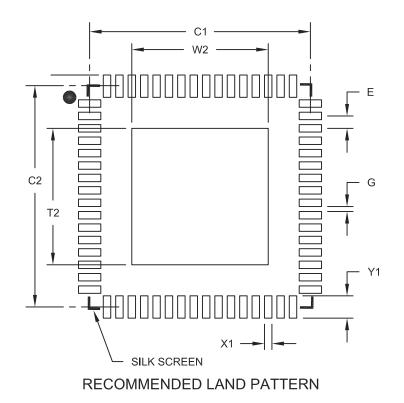
3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.

PIC32MX330/350/370/430/450/470

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM


TABLE 31-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless o	otherwise sta	ated) ∋ 0°C ≤ T -40°C ≤	prditions: 2.3V to 3.6V ed) $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp		
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	_	_	_	
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 Трв	—		—	
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	—			
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	—	ns	_	
PM5	Trd	PMRD Pulse Width	—	1 Трв	_	—	—	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_	
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 Трв	—	—	—	PMP Clock	

Note 1: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			5.50
Optional Center Pad Length	T2			5.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A