

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128l-v-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX330/350/370/430/450/470

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
31:24	NVMKEY<31:24>									
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
23:16	NVMKEY<23:16>									
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
15:8	NVMKEY<15:8>									
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
7:0				NVMK	EY<7:0>			•		

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				NVMADI	DR<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMADDR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMADDR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		NVMADDR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **NVMADDR<31:0>:** Flash Address bits Bulk/Chip/PFM Erase: Address is ignored Page Erase: Address identifies the page to erase Row Program: Address identifies the row to program Word Program: Address identifies the word to program

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		NVMDATA<31:24>									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMDATA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMDATA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				NVMD	ATA<7:0>						

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

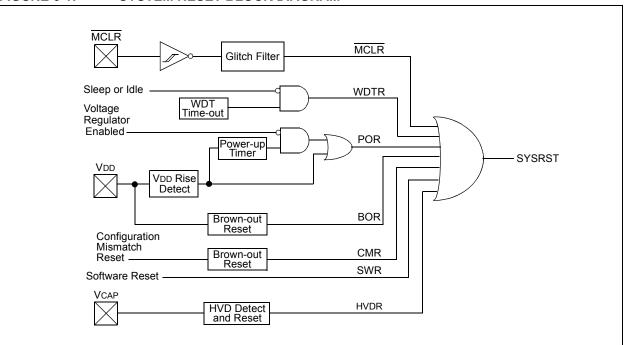
Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		NVMSRCADDR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMSRCADDR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMSRCADDR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		NVMSRCADDR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits


The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset pin
- · SWR: Software Reset
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits
 - 111 = Clock is multiplied by 24
 - 110 = Clock is multiplied by 21
 - 101 = Clock is multiplied by 20
 - 100 = Clock is multiplied by 19
 - 011 = Clock is multiplied by 18
 - 010 = Clock is multiplied by 17
 - 001 = Clock is multiplied by 16
 - 000 =Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)

On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).

- bit 7 CLKLOCK: Clock Selection Lock Enable bit
 - If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):
 - 1 = Clock and PLL selections are locked
 - 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x): Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit⁽¹⁾
 - 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
- bit 4 **SLPEN:** Sleep Mode Enable bit
 - 1 = Device will enter Sleep mode when a WAIT instruction is executed
 - 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 CF: Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected
- **Note 1:** This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	_		_	—
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	_	—	—	_	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'	
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit	
	1 = Interrupt is enabled0 = Interrupt is disabled	
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit	
	1 = Interrupt is enabled	
h:+ 04	0 = Interrupt is disabled	
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit 1 = Interrupt is enabled	
	0 = Interrupt is disabled	
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit	
	1 = Interrupt is enabled	
	0 = Interrupt is disabled	
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit	
	 1 = Interrupt is enabled 0 = Interrupt is disabled 	
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit	
DIL TO	1 = Interrupt is enabled	
	0 = Interrupt is disabled	
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit	
	1 = Interrupt is enabled	
	0 = Interrupt is disabled	
bit 16	CHERIE: Channel Address Error Interrupt Enable bit	
	 1 = Interrupt is enabled 0 = Interrupt is disabled 	
bit 15-8	Unimplemented: Read as '0'	
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit	
	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)	
	0 = No interrupt is pending	
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit	
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)	
	0 = No interrupt is pending	
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit	
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending 	
		-
© 2012-201	16 Microchip Technology Inc. DS	6

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_			—		_		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_			—	-	_		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	_	_	_	—	_	_	-	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPDEN			D	EVADDR<6:0	>		

REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 **LSPDEN:** Low Speed Enable Indicator bit

1 = Next token command to be executed at Low Speed

0 = Next token command to be executed at Full Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

				HOMBER E				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	_	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	_	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—			—	-	—	—
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				FRML	<7:0>			

REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

TABLE 12-6: PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_	_		—		—	—	—	—	-	—	—			—	—	0000
0210	TRIBC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	—	_	_	_	_	_	—	—	_	xxxx
6220	PORTC	31:16	_	_		_	_	—	_	—	_	_	—	—	—	—		—	0000
0220	TOINIC	15:0	RC15	RC14	RC13	RC12	_	—	_	—	—	_	—	—	—	—		—	xxxx
6230	LATC	31:16	_			_	_	—	—	—	—				—	—		—	0000
0200	2/10	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	_			—	—	—	—	xxxx
6240	ODCC	31:16	_	—		—	_	—	—	—	—	—	—	—	—	—	—	—	0000
02.0		15:0	ODCC15	ODCC14	ODCC13	ODCC12	-	—	—	—	—	—	—	—	—	—	—	—	xxxx
6250	CNPUC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	-	—	—	—	—	—	—	—	—	—	—	—	xxxx
6260	CNPDC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	_	—	—	—	_	_	_	—		—	xxxx
6270	CNCONC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
02.0		15:0	ON	—	SIDL	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
6280	CNENC	31:16	_	—		—	_	—	_	—	_	_	_	_	_	—		_	0000
		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	—	_	—	—	—	_	_	_	—	-	—	xxxx
6290	CNSTATC	31:16	_	—		—	_	—	—	—	—	—	—	—	—	—	—	—	0000
0200	0.10 // 10	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	—	—	—	—	—	—				—	—		xxxx

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

		P	C32MX	430F064	L, PIC3	2MX450	F128L,	PIC32M	X450F2	56L, AN	ID PIC3	2MX47	0F512L	DEVIC	ES ONL	.Y			
ess										Bits	6								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300	ANSELD	31:16		—	—	—	—		—	—	—		—	—	—		—		0000
		15:0	_	—	—	_	—	—	—	—	—	_	—	—	ANSELD3	ANSELD2	ANSELD1	_	000E
6310	TRISD	31:16	_	—	—	—	—	—	—	—	—		—	_	_	_	—	_	0000
	_	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	xxxx
5320	PORTD	31:16	_	—	_	—	—	—	—	—	—		—	—		—	—	_	0000
	_	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	LATD	31:16		—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
6340	ODCD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	xxxx
6350	CNPUD	31:16	-	—	—	—	—	-	—	—	—	—	—	—	—	—	—	-	0000
		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10		CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	xxxx
6360	CNPDD	31:16	-	—	—	—	—	-	—	—	—	—	_	—	—	—	—	-	0000
			CNPDD15	-	CNPDD13	CNPDD12	CNPDD11	CNPDD10		CNPDD8	-	CNPDD6		CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	XXXX
6370	CNCOND	31:16	_		-											_			0000
		15:0	ON		SIDL											_			0000
6380	CNEND	31:16	-	-	-	-			-	-	-		-	-	-	-			0000
		15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	XXXX
6200		31:16	-	-	—	—	—	-	-	-	-	-	—	-	—	—	—	-	0000
6390	CNSTATD	15:0	CNS TATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	xxxx

TABLE 12-7: PORTD REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

		C	ONLY																
ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16	_	_	_		_		_				_		-				0000
0310	TRIST	15:0	_	—	TRISF13	TRISF12	_	_	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	xxxx
6520	PORTF	31:16	—	—	—	—	_	-	—	-	-	-	—	_	_	-	_	-	0000
0520	TOKI	15:0	—	—	RF13	RF12	_	-	—	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATF	31:16	—	—	—	—	_	-	—	-	-	-	—	_	_	-	_	-	0000
0000	LAII	15:0	—	—	LATF13	LATF12	_	-	—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCF	31:16	_		—	—	—	_		_	_		—	_	_	_			0000
0040	0001	15:0	_		ODCF13	ODCF12	—	_		ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	xxxx
6550	CNPUF	31:16	—		—	—	—	—		—	—	_	—	—	—	—	—	_	0000
0000		15:0	—	—	CNPUF13	CNPUF12	—	—	—	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	xxxx
6560	CNPDF	31:16	—	—	—	—	—	_	—	—	_	—	—	_	—	_	—	—	0000
		15:0	—	—	CNPDF13	CNPDF12	—	-	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	xxxx
6570	CNCONF	31:16	—	—	—	—	—	-	—	-	-	-	—	_	—	-	—	—	0000
		15:0	ON	—	SIDL	—	—	-	—	-	-	_	—	_	—	-	—	—	0000
6580	CNENF	31:16	—	—	—	—	—	-	—	-	-	_	—	_	-	-	—	—	0000
		15:0	—	—	CNIEF13	CNIEF12	—	-	—	CNIEF8	CNIEF7	_	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	xxxx
		31:16	—	—	—	—	—	-	—	-	-	_	—	_	—	-	—	—	0000
6590	CNSTATF	15:0	_	—	CN STATF13	CN STATF12	_	_	—	CN STATF8	CN STATF7	_	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	xxxx

TABLE 12-11: PORTF REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, AND PIC32MX370F512L DEVICES

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

2012-2016	
Microchip	
Technology	
Inc	

0

SS										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FC14	RPE5R	31:16		—	—	—	—	_	—		_	_	—		_	_	—	_	0000
		15:0	—	—	—	—	—	_	—	—	—	_	—	_		RPE5	<3:0>		0000
FC20	RPE8R ⁽¹⁾	31:16	_	—	_			_	—		_			_	_	-	-	—	0000
		15:0 31:16														RPE8	<3:0>	_	0000
FC24	RPE9R ⁽¹⁾	15:0	_	_	_		_					_	_	_	_	 RPE9	<3:0>	_	0000
		31:16	_	_	_		_	_	_			_	_	_	_		_	_	0000
FC40	RPF0R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF0	<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC44	RPF1R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF1	<3:0>		0000
FC48	RPF2R ⁽³⁾	31:16	—	—	—	—	_	_	—	_		_	—	—		—	_	_	0000
FC40	RPF2R**	15:0	_	_	_	-	-	-	_	—	_		-	—		RPF2	<3:0>		0000
FC4C	RPF3R ⁽²⁾	31:16	—	—	—			_	—	_	—			—	—	—	—	—	0000
1 040		15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPF3	<3:0>		0000
FC50	RPF4R	31:16	—	—	—	—	—	_	—	-	—	_	—	—	—	—	—	—	0000
1000		15:0	-	—	—	—	—	_	—	_	—		—	_		RPF4	<3:0>		0000
FC54	RPF5R	31:16	—	_	_	—		_	_	—	—		—	_	—			—	0000
		15:0	-	_	-	—	—	_	_	_	-	-	—	_		RPF5	<3:0>		0000
FC58	RPF6R ⁽²⁾	31:16	_	_	_	_		_	_			_	_	_			-		0000
		15:0 31:16	_							_				_		RPF6			0000
FC60	RPF8R ⁽¹⁾	15:0														 RPF8		—	0000
		31:16															<0.0×		0000
FC70	RPF12R ⁽¹⁾	15:0	_	_	_	_	_		_	_			_	_		RPF12	2<3:0>		0000
	(4)	31:16	_					_		_	_	_		_		_	_	_	0000
FC74	RPF13R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF1	3<3:0>		0000
	55665(1)	31:16	_	_			_	_	_	_	_	_	_	_		_		_	0000
FC80	RPG0R ⁽¹⁾	15:0	_	—	_	—	—	_	—	_	_	_	—	_		RPG0	<3:0>		0000
FC84	RPG1R ⁽¹⁾	31:16		—		_	_		—				_	-		—		_	0000
FU04	RPGIR''	15:0		_	—	_	_	_	_			-	_	_		RPG1	<3:0>		0000
FC98	RPG6R	31:16	—	—	_	—	—	_	—	—	_	-	—	—	_	—			0000
1090		15:0		—	_	_	_	_	—		_	_	—	—		RPG6	<3:0>		0000
FC9C	RPG7R	31:16	_	—	—	_	—	_	—	_	—		—	_	_		—	—	0000
		15:0	—	 set; = ur	—	—	—	—	—	_	_	_	_	—		RPG7	<3:0>		0000

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

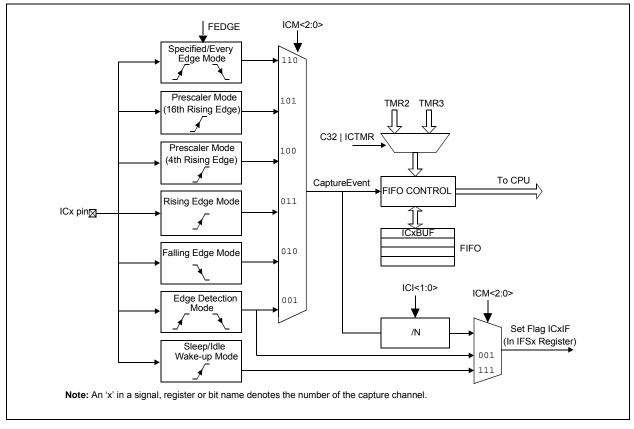
3: This register is not available on 64-pin devices with a USB module.

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:


- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.

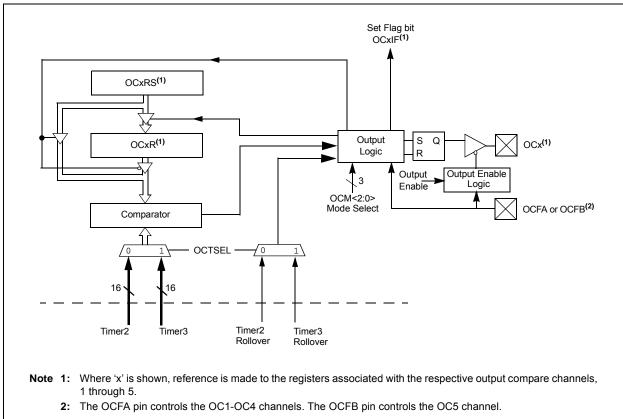
- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM


17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

REGISTE	ER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	1 = Receive buffer has overflowed0 = Receive buffer has not overflowed

- bit 0 URXDA: Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

26.1 Control Register

TABLE 26-1: CTMU REGISTER MAP

ess		0								Bits									ŝ
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1 200	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	SEL<3:0>		—	_	0000
A200	CTWOCON	15:0	ON	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			ITRIM	<5:0>			IRNG	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

27.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a $\tt WAIT$ instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

27.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P		
31:24		_	_	-	—	_	FWDTWI	NSZ<1:0>		
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P		
23:16	FWDTEN	WINDIS				WDTPS<4:0>				
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P		
15:8	FCKSM	1<1:0>	FPBDI	V<1:0>	—	OSCIOFNC	POSCM	OD<1:0>		
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P		
7:0	IESO	_	FSOSCEN	_	—	F	FNOSC<2:0>			

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1 :4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100
···· · ··· · ··· · ··· · ··· · ···

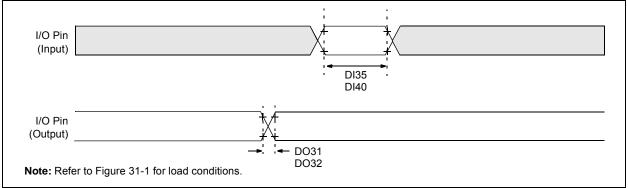

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

TABLE 31-21: INTERNAL LPRC ACCURACY

АС СНА	RACTERISTICS	(unless	$\label{eq:standard operating Conditions: 2.3V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions			
LPRC @ 31.25 kHz ⁽¹⁾									
F21	LPRC	-15	—	+15	%	—			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 31-3: I/O TIMING CHARACTERISTICS

TABLE 31-22: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
DO31	TIOR	Port Output Rise Time		—	5	15	ns	Vdd < 2.5V	
			_	5	10	ns	Vdd > 2.5V		
DO32	TIOF Port Output Fall Time		е	_	5	15	ns	VDD < 2.5V	
			—	5	10	ns	VDD > 2.5V		
DI35	TINP	INTx Pin High or Lo	10	—	_	ns	—		
DI40	Trbp	CNx High or Low Tir	2	_	_	TSYSCLK	_		

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

AC CHA	RACTERIS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol Characteristics			Min.	Max.	Units	Conditions	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—	
		Hold Time	400 kHz mode	600	_	ns		
			1 MHz mode (Note 1)	250		ns		
IS40 T	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3		μs	must be free before a new	
			1 MHz mode (Note 1)	0.5	—	μS	transmission can start	
IS50	Св	Bus Capacitive Lo		400	pF	—		

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARACTERISTICS ⁽²⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
ADC Input	ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	VDD ADC Channels Contiguration		
AN0-AN14	1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC	
	Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX ADC ANX or VREF-	
AN15-AN27	400 ksps ⁽¹⁾	154 ns	1000 ns	500Ω	3.0V to 3.6V	ANX CHX ANX ADC	

TABLE 31-36: 10-BIT CONVERSION RATE PARAMETERS ſ

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.