

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Active
MIPS32® M4K™
32-Bit Single-Core
80MHz
I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Brown-out Detect/Reset, DMA, POR, PWM, WDT
85
128KB (128K x 8)
FLASH
-
32K x 8
2.3V ~ 3.6V
A/D 28x10b
Internal
-40°C ~ 85°C (TA)
Surface Mount
100-TQFP
100-TQFP (12x12)
https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128lt-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the following documents, refer
	to the Documentation > Reference
	Manuals section of the Microchip PIC32
	website: http://www.microchip.com/pic32.

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 4. "Prefetch Cache" (DS60001119)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

Bit Range	t Bit Bit ge 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	HVDR	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
15:8	—	—	—	—	—	—	CMR	VREGS
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7:0	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29 HVDR: High Voltage Detect Reset Flag bit 1 = High Voltage Detect (HVD) Reset has occurred 0 = HVD Reset has not occurred bit 28-10 Unimplemented: Read as '0' bit 9 **CMR:** Configuration Mismatch Reset Flag bit 1 = Configuration mismatch Reset has occurred 0 = Configuration mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby Enable bit 1 = Regulator is enabled and is on during Sleep mode 0 = Regulator is set to Stand-by Tracking mode EXTR: External Reset (MCLR) Pin Flag bit bit 7 1 = Master Clear (pin) Reset has occurred 0 = Master Clear (pin) Reset has not occurred bit 6 SWR: Software Reset Flag bit 1 = Software Reset was executed 0 = Software Reset as not executed bit 5 Unimplemented: Read as '0' bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT Time-out has occurred 0 = WDT Time-out has not occurred bit 3 **SLEEP:** Wake From Sleep Flag bit 1 = Device was in Sleep mode 0 = Device was not in Sleep mode bit 2 **IDLE:** Wake From Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode **BOR:** Brown-out Reset Flag bit⁽¹⁾ bit 1 1 = Brown-out Reset has occurred 0 = Brown-out Reset has not occurred bit 0 **POR:** Power-on Reset Flag bit⁽¹⁾ 1 = Power-on Reset has occurred
 - 0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view next detection.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

Following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

bit 4 **CHDHIF:** Channel Destination Half Full Interrupt Flag bit

- 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
- 0 = No interrupt is pending
- bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
 - 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
 - 0 = No interrupt is pending
- bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
 - 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
 - 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending
- bit 0 CHERIF: Channel Address Error Interrupt Flag bit
 - 1 = A channel address error has been detected
 - Either the source or the destination address is invalid.
 - 0 = No interrupt is pending

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection
INT1	INT1R	INT1R<3:0>	0000 = RPD1 0001 = RPG9
ТЗСК	T3CKR	T3CKR<3:0>	0010 = RPB14 0011 = RPD0
IC1	IC1R	IC1R<3:0>	0100 = RPD8 0101 = RPB6
U3CTS	U3CTSR	U3CTSR<3:0>	0110 = RPD5 0111 = RPB2
U4RX	U4RXR	U4RXR<3:0>	1000 = RPF3 ⁽⁴⁾ 1001 = RPF13 ⁽³⁾
U5RX	U5RXR ⁽³⁾	U5RXR<3:0>	1010 = Reserved 1011 = RPF2 ⁽¹⁾
SS2	SS2R	SS2R<3:0>	1100 = RPC2 ⁽³⁾ 1101 = RPE8 ⁽³⁾
OCFA	OCFAR	OCFAR<3:0>	1110 = Reserved 1111 = Reserved

TABLE 12-1:INPUT PIN SELECTION (CONTINUED)

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin USB and General Purpose devices.

4: This selection is only available on General Purpose devices.

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess										Bits									
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_		_	_	_	—	_	_	_	—	_	—	—	—	_		0000
0210	INIOC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1		xxxx
6220	PORTC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0220	TORIC	15:0	RC15	RC14	RC13	RC12	_	—	_	_	_	_	_	RC4	RC3	RC2	RC1		xxxx
6230		31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
6230	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	—	_	_	_	—	_	LATC4	LATC3	LATC2	LATC1		xxxx
6240	ODCC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0240		15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	—	_	_	_	_	_	ODCC4	ODCC3	ODCC2	ODCC1		xxxx
6250	CNPUC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0230		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	—	_	_	_	_	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1		xxxx
6260	CNPDC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	—	_	_	_	_	_	CNPDC4	CNPDC3	CNPDC2	CNPDC1		xxxx
6270	CNCONC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0270	CINCOINC	15:0	ON	_	SIDL	_	_	—	_	_	_	_	_	_	—	—	—		0000
6280	CNENC	31:16	_	—		_	_	—	_	_	_	_	_	_	—	—	—		0000
0200	ONLINO	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12		—				—	_	CNIEC4	CNIEC3	CNIEC2	CNIEC1		xxxx
6290	CNSTATC	31:16	_	—		_	_	—	_	_	_	—	_	—	—	—	—		0000
0290	SNOTATO	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_	_	—	_	_	_	_	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	—	xxxx

TABLE 12-5: PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

15.1 Watchdog Timer Control Registers

DS6000	
)1185F-p	
bage 1	
78	

TABLE 15-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess	Register Name ⁽¹⁾										Bits								<i>(</i> 0
Virtual Addr (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	_	_	-	—	—	—	_	_	_	-	-	-	—	_	0000
0000	WDICON	15:0	ON	_	_	_	_	_	_	_	_		SV	VDTPS<4:()>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

18.1 Control Registers

TABLE 18-1: SPI2 AND SPI2 REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5800	SDI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:0)>	MCLKSEL				—	—	SPIFE	ENHBUF	0000
3800	SFILCON	15:0	ON	-	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5040	CDI1CTAT	31:16	_	—	—		RXE	BUFELM<4:	:0>		—	_	_		TX	BUFELM<4	:0>		0000
5810	SFIISTAI	15:0	_	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	19EE
5000		31:16									21:05								0000
5820	15:0												0000						
5000		31:16	_	_	—	_	_	—	_	—	—	—	—	_	—	_	_	—	0000
5830	SPIIBRG	15:0	_	_	_	—	_	_	_					BRG<8:0>					0000
		31:16	_	_	_	—	_	_	_	_	—	—	—	_	—	_	_	—	0000
5840	SPI1CON2	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	—	AUD MONO	_	AUDMO)D<1:0>	0000
		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:0)>	MCLKSEL	—	_	-	_	_	SPIFE	ENHBUF	0000
5A00	SPIZCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	L<1:0>	0000
		31:16	_	_	_		RXE	BUFELM<4:	:0>		_	_	_		TX	BUFELM<4	:0>		0000
5A10	SPIZSTAT	15:0	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE		SPITBE	_	SPITBF	SPIRBF	19EE
		31:16																	0000
5A20	SPIZBUF	15:0											0000						
5400		31:16	_	-	_	_	-	_	_	_	-	-	_	_	-	_	_	_	0000
5A30	SPIZBRG	15:0	_	_	_	—	_	_	_					BRG<8:0>					0000
		31:16		_	_	_	_	_	_	_	_	—	_		_	_	_	_	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	_	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	—	AUD MONO	_	AUDMO)D<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	_	_	_	—	—	_	—	—					
23.16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—	—	—	—	—					
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
15.8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾		AMASK	<3:0> ⁽³⁾						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	ARPT<7:0> ⁽³⁾												

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit⁽²⁾

- 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
- 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽³⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved; do not use
- 1011 = Reserved; do not use
- 11xx = Reserved; do not use
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

24.1 Control Registers

TABLE 24-1: COMPARATOR REGISTER MAP

ess	b -	0								Bi	its								6
Virtual Add (BF80_#	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
4.000	CM1CON	31:16	_	—	—	—	-	—	—	_	—	—	—	-	—	_	-	—	0000
A000		15:0	ON	COE	CPOL		—	—	—	COUT	EVPO	L<1:0>	—	CREF	—	_	CCH	<1:0>	E1C3
A010	CM2CON	31:16	_	—	—	_	—	_	—	—	_	_	—	—	_	_	—	—	0000
AUTU	CIVIZCON	15:0	ON	COE	CPOL	—	—	_	—	COUT	EVPO	L<1:0>	—	CREF	—	_	CCH	<1:0>	E1C3
1060	CMSTAT	31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
A060	CIVISTAT	15:0	_	-	SIDL	_	_		-			_	_		_	_	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MX330/350/370/430/450/470

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

REGISIE	
bit 24	EDG1STAT: Edge 1 Status bit
	Indicates the status of Edge 1 and can be written to control edge source
	1 = Edge 1 has occurred
	0 = Edge 1 has not occurred
bit 23	EDG2MOD: Edge 2 Edge Sampling Select bit
	1 = Input is edge-sensitive
h:4 00	0 = Input is level-sensitive
DIT 22	EDG2POL: Edge 2 Polarity Select bit
	1 = Edge 2 programmed for a positive edge response
h:+ 04 40	0 = Edge 2 programmed for a negative edge response
DIT 21-18	EDG2SEL<3:0>: Edge 2 Source Select bits
	1111 = Reserved
	1110 = C2001 pin is selected
	1100 = PBCLK clock is selected
	1011 = IC3 Capture Event is selected
	1010 = IC2 Capture Event is selected
	1001 = IC1 Capture Event is selected
	1000 = CTED13 pin is selected
	0111 = CTED12 pin is selected
	0110 = CTED10 pin is selected
	0100 = CTED9 pin is selected
	0011 = CTED1 pin is selected
	0010 = CTED2 pin is selected
	0001 = OC1 Compare Event is selected
	0000 = Timer1 Event is selected
bit 17-16	Unimplemented: Read as '0'
bit 15	ON: ON Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode
bit 12	TGEN: Time Generation Enable bit ¹
	1 = Enables edge delay generation
L:L 44	U = Disables edge delay generation
dit 11	
	1 = Edges are not blocked
	U - FOUES ALE DIOCKEO

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

29.0 INSTRUCTION SET

The PIC32MX330/350/370/430/450/470 family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to "MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

DC CHARA	CTERISTICS	5	Standard (unless of Operating	$\begin{array}{l} \textbf{Operating Conditions: 2.3V t} \\ \textbf{therwise stated)} \\ \textbf{temperature} & 0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ} \\ -40^{\circ}\text{C} \leq \text{TA} \leq +8 \\ -40^{\circ}\text{C} < \text{TA} < +1 \end{array}$	o 3.6V C for Commercial 5°C for Industrial 05°C for V-temp		
Parameter No.	Typical ⁽³⁾	Maximum	Units	ts Conditions			
Operating (Current (IDD)	(1,2)					
DC20	2.5	4	mA 4 MHz				
DC21	6	9	mA	10 MI	Hz (Note 4)		
DC22	11	17	mA	20 MI	Hz (Note 4)		
DC23	21	32	mA	40 MI	Hz (Note 4)		
DC24	30	45	mA	60 MHz (Note 4)			
DC25	40	60	mA	80 MHz			
DC25a 50 75			mA	100 MHz, -40°C ≤ TA ≤ +85°C			
DC25c	72	84	mA	120 MHz, $0^{\circ}C \le TA \le +70^{\circ}C$			
DC26	100		μA	+25°C, 3.3V	LPRC (31 kHz) (Note 4)		

TABLE 31-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - · OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating (ON bit = 0), but the associated PMD bit is clear
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - · All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics Min. ⁽¹⁾ Typical Max.			Max.	Units	Conditions
BO10	Vbor	BOR Event on VDD transition high-to-low	2.0	—	2.3	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No. ⁽¹⁾ Symbol Characteristics			Min.	Typical	Max.	Units	Conditions	
HV10	Vhvd	High Voltage Detect on VCAP pin	_	2.5		V	_	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

FIGURE 31-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 31-30: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	ARACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—	_	ns	—
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	—
SP20	TscF	SCKx Output Fall Time (Note 4)	—	_		ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	_	ns	See parameter DO32
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—		ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	—	_	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—		20	ns	VDD < 2.7V
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	15	—		ns	_
SP40	TDIV2scH,	DIV2scH, Setup Time of SDIx Data Input to DIV2scL SCKx Edge	15	—		ns	VDD > 2.7V
	TDIV2scL		20	—	_	ns	VDD < 2.7V
SP41	TscH2DIL,	Hold Time of SDIx Data Input	15	_	_	ns	VDD > 2.7V
	TscL2DIL	to SCKx Edge	20	_	_	ns	VDD < 2.7V

Note 1: These parameters are characterized, but not tested in manufacturing.

- Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only 2: and are not tested.
- The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not 3: violate this specification.
- Assumes 50 pF load on all SPIx pins. 4:

FIGURE 31-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No. Symbol Characteristics ⁽¹⁾				Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	—	—	ns	—		
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	_	ns	—		
SP72	TscF	SCKx Input Fall Time	—		—	ns	See parameter DO32		
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31		
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_			ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_		ns	See parameter DO31		
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V		
	TscL2DoV	SCKx Edge			20	ns	VDD < 2.7V		
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	175	—		ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	_	25	ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 31-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	Е		0.50 BSC		
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

PIC32MX330/350/370/430/450/470

NOTES: