

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

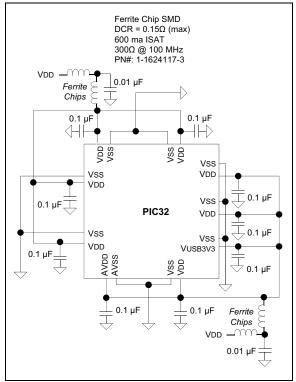
E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f128lt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.9 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.10 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-5. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-5: EMI/EMC/EFT SUPPRESSION CIRCUIT

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX330/350/370/430/450/470 family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0				

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 IEC31-IEC0: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

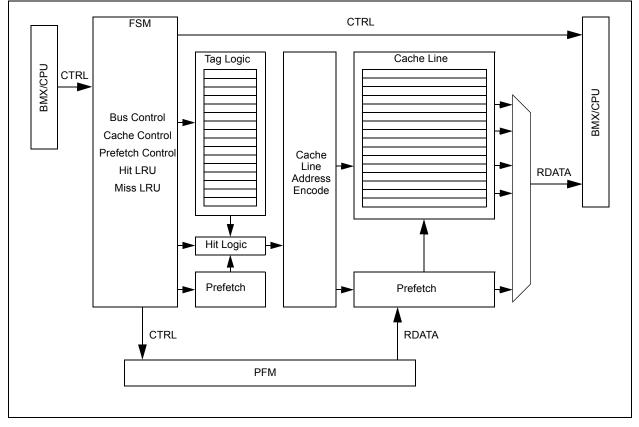
Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit⁽¹⁾
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 SOSCEN: Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
 - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

9.0 PREFETCH CACHE


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Prefetch Cache" (DS60001119), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching.

9.1 Features

- 16 fully associative lockable cache lines
- 16-byte cache lines
- Up to four cache lines allocated to data
- Two cache lines with address mask to hold repeated instructions
- · Pseudo LRU replacement policy
- · All cache lines are software writable
- · 16-byte parallel memory fetch
- · Predictive instruction prefetch

A simplified block diagram of the Prefetch Cache module is illustrated in Figure 9-1.

FIGURE 9-1: PREFETCH CACHE MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	CHEWEN	—			—			—				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	-	—		-	—		-	—				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
10.0	—	—	_	-	—	—	-	—				
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0			_			CHEID	X<3:0>					

REGISTER 9-2: CHEACC: CACHE ACCESS REGISTER

Legend:

0						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 **CHEWEN:** Cache Access Enable bits for registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and CHEW3

1 = The cache line selected by CHEIDX<3:0> is writeable

0 = The cache line selected by CHEIDX<3:0> is not writeable

bit 30-4 **Unimplemented:** Write '0'; ignore read

bit 3-0 CHEIDX<3:0>: Cache Line Index bits

The value selects the cache line for reading or writing.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	DCH1SSIZ	31:16	_	_	_	_		_	_	_		—	_	_	—	_	_		0000
0170	DOITIOOIZ	15:0								CHSSIZ	2<15:0>	t			i		i		0000
3180	DCH1DSIZ	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0100	DOITIDOIL	15:0								CHDSIZ	2<15:0>								0000
3190	DCH1SPTR	31:16	—	—	_	—	_	—	_	—	—	—	_	—	—	_	—	—	0000
		15:0								CHSPT	R<15:0>								0000
31A0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHDPTI	R<15:0>								0000
31B0	DCH1CSIZ	31:16	_	_	—		_	—	_	—	_	—	_	—	_	—	—	_	0000
		15:0								CHCSIZ	2<15:0>								0000
31C0	DCH1CPTR	31:16	_	_	—	—	_	—	_	—	—	—	_	—	—	—	—	_	0000
		15:0								CHCPTI	≺<15:0>								0000
31D0	DCH1DAT	31:16	_	_			_			_	_	—	_			_	—	_	0000
		15:0		_		_	_			_				CHPDA					0000
31E0	DCH2CON	31:16	—	_		_	_			—	-	-	—	—	_	-	_		0000
-		15:0	CHBUSY	_	_	_	_	_		CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	1<1:0>	0000
31F0	DCH2ECON	31:16	—	_	_		-	_	_	_	CFORCE	CABORT	PATEN	CHAIR					00FF
		15:0				CHSIR					CHSDIE	CABORT	CHDDIE	SIRQEN CHDHIE	AIRQEN CHBCIE				FFF8
3200	DCH2INT	31:16 15:0	—	_	_	_	_	_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
-		31:16	—	_	_		_	_	—	—	CHODIF	CHONIF	CHUDIF	CUDULLE	CUBCIL	CHCCIF	CHIAIF	CHERIF	0000
3210	DCH2SSA	15:0								CHSSA	<31:0>								0000
-		31:16																	0000
3220	DCH2DSA	15:0								CHDSA	<31:0>								0000
		31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
3230	DCH2SSIZ	15:0								CHSSIZ	/<15 [.] 0>								0000
		31:16	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	0000
3240	DCH2DSIZ	15:0								CHDSIZ	/<15 [.] 0>								0000
		31:16	_		_			_		_			_	_					0000
3250	DCH2SPTR	15:0								CHSPT	R<15:0>								0000
		31:16	_		_			_		_	_		_	_				_	0000
3260	DCH2DPTR	15:0								CHDPT	R<15:0>								0000
		31:16	_		_			_		_	_		_	_					0000
3270	DCH2CSIZ	15:0								CHCSIZ	2<15:0>								0000
Leger	d: x = 11		value on R	eset: — = I	unimplemer	nted, read a	s '0'. Reset	values are	shown in h										

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	-	-	_	_	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		—	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_		_		RDWR	[DMACH<2:0>	•

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	DMAADDR<31:24>										
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16	DMAADDR<23:16>										
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	DMAADDR<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				DMAADD	R<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

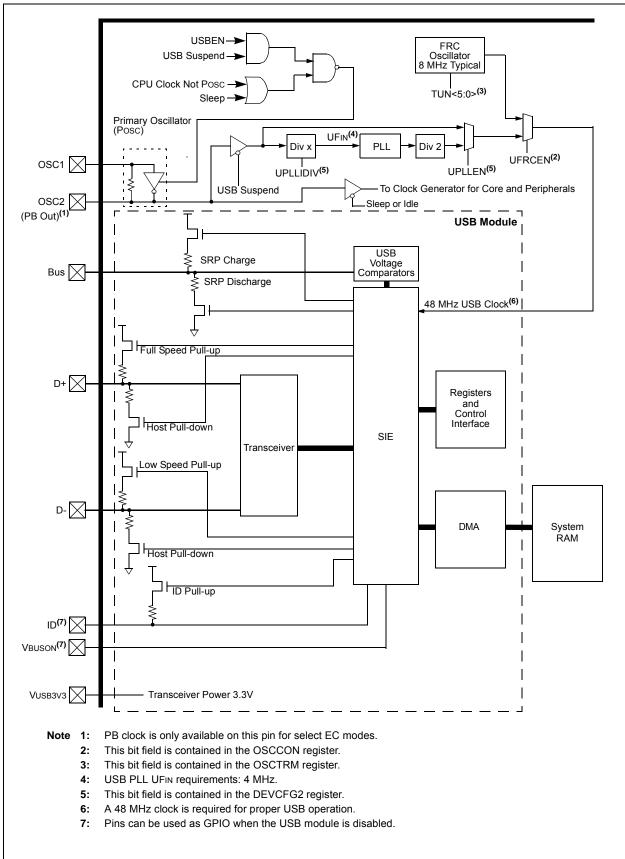


FIGURE 11-1: PIC32MX430/450/470 USB INTERFACE DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_				—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_			-	—		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	_			-	—		—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
7.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE

REGISTER 11-2: U10TGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt is enabled
 - 0 = 1 millisecond timer interrupt is disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt is enabled
 - 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt is enabled
 - 0 = ACTIVITY interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt is enabled
 - 0 = B-session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt is enabled
 - 0 = A-VBUS valid interrupt is disabled

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit
 - When TCS = 1:1 = External clock input is synchronized0 = External clock input is not synchronizedWhen TCS = 0:This bit is ignored.
- bit 1 **TCS:** Timer Clock Source Select bit 1 = External clock from TxCKI pin 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—		_	_			—	_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	-	—	—	-	—	—	—			
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
15:8	ON ^(1,3)	_	SIDL ⁽⁴⁾	—	_	_	—	—			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
7:0	TGATE ⁽³⁾	Т	CKPS<2:0>(3	3)	T32 ⁽²⁾		TCS ⁽³⁾	_			

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled
 - 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode

bit 12-8 Unimplemented: Read as '0'

- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾
 - When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits⁽³⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value
- 000 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

15.1 Watchdog Timer Control Registers

DS60001185F-page	
е —	
78	

TABLE 15-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		æ												s					
Virtual Addres (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	WDTCON	31:16	_	_	_	_	-	-	—	—	_	—	—	_	_	_	—	—	0000
0000	WDICON	15:0	D ON									0000							

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGIST	ER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)
bit 17			e Edge Select bit (Framed SPI mode only)
			on pulse coincides with the first bit clock
h:+ 40			on pulse precedes the first bit clock fer Enable bit ⁽²⁾
bit 16		ed Buffer mo	
		ed Buffer mod	
bit 15		ripheral On bi	
		ripheral is ena	
		ripheral is dis	
bit 14	Unimpleme	ented: Read a	as '0'
bit 13	SIDL: Stop	in Idle Mode b	pit
		•	n when CPU enters in Idle mode
		ue operation i	
bit 12		isable SDOx	
			d by the module. Pin is controlled by associated PORT register ed by the module
bit 11-10			t Communication Select bits
	When AUD		Communication Select bits
	MODE32	MODE16	Communication
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame
	When AUD	FN = 0:	
	MODE32	MODE16	Communication
	1	x	32-bit
	0	1	16-bit
	0	0	8-bit
bit 9			nple Phase bit
		<u>le (MSTEN =</u> ata sampled a	\pm). at end of data output time
			at middle of data output time
		• (MSTEN = 0	
		-	en SPI is used in Slave mode. The module always uses SMP = 0.
bit 8		lock Edge Se	
			anges on transition from active clock state to Idle clock state (see CKP bit) anges on transition from Idle clock state to active clock state (see CKP bit)
bit 7		-	ble (Slave mode) bit
		n used for Sla	
			Slave mode, pin controlled by port function.
bit 6		Polarity Sele	
	1 = Idle sta	te for clock is	a high level; active state is a low level
			a low level; active state is a high level
bit 5		aster Mode Er	hable bit
	1 = Master 0 = Slave r		
		lieue	
Note 1:	When using	g the 1:1 PBC	LK divisor, the user software should not read or write the peripheral's SFRs in the
		-	ely following the instruction that clears the module's ON bit.
2:	This bit car	n only be writte	en when the ON bit = 0.
3:	This bit is r mode (FRN		e Framed SPI mode. The user should program this bit to '0' for the Framed SPI
4:	-	-	PI module functions as if the CKP bit is equal to '1', regardless of the actual value
	of CKP.	<u> </u>	

REGISTE	ER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	1 = Receive buffer has overflowed0 = Receive buffer has not overflowed

- bit 0 URXDA: Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

NOTES:

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽³⁾ 11111111 = Alarm will trigger 256 times

0000000 = Alarm will trigger one time

The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

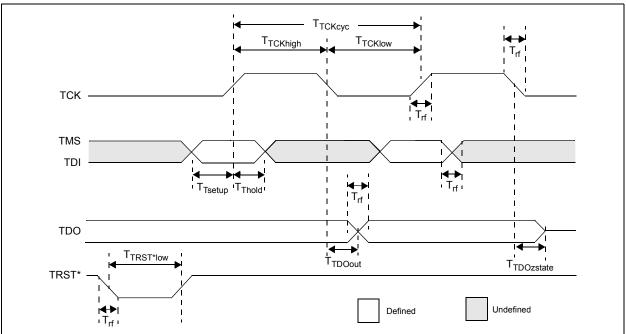
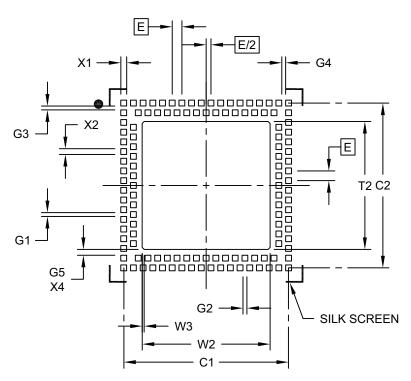

23.1 **Control Registers**

TABLE 23-1: ADC REGISTER MAP

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9000	AD1CON1 ⁽¹⁾	31:16		_						_		_							000
		15:0	ON	_	SIDL	—	_		FORM<2:0>			SSRC<2:0>		CLRASAM	_	ASAM	SAMP	DONE	000
9010	AD1CON2 ⁽¹⁾	31:16	_	—	—	—	_	—	—	—	-	—	—	-	—	—	—	—	000
		15:0		VCFG<2:0>		OFFCAL		CSCNA	_		BUFS	_		SMPI	<3:0>		BUFM	ALTS	000
9020	AD1CON3 ⁽¹⁾	31:16	-	_	_	—	_	—	_	—	_	_	_		—	—	—		0000
		15:0	ADRC	—				SAMC<4:0			0110114			ADCS					0000
9040	AD1CHS(1)	31:16	CH0NB	—				CH0SB<4:0			CH0NA					CH0SA<4:0			0000
		15:0		-	—	—	-	-	-	-	-	-	—	—	-	-	-	-	0000
9050	AD1CSSL ⁽¹⁾	31:16	-	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24	CSSL23	CSSL22	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16	_
		15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
9070	ADC1BUF0	31:16 15:0							ADC Res	sult Word 0	(ADC1BUF	0<31:0>)							0000
																			0000
9080	ADC1BUF1	31:16 15:0							ADC Res	sult Word 1	(ADC1BUF	1<31:0>)							0000
																			0000
9090	ADC1BUF2	31:16 15:0							ADC Res	sult Word 2	(ADC1BUF	2<31:0>)							0000
		31:16																	0000
90A0	ADC1BUF3	15:0							ADC Res	sult Word 3	(ADC1BUF	3<31:0>)							0000
		31:16																	0000
90B0	ADC1BUF4	15:0							ADC Res	sult Word 4	(ADC1BUF	4<31:0>)							0000
		31:16																	0000
90C0	ADC1BUF5	15:0							ADC Res	sult Word 5	(ADC1BUF	5<31:0>)							0000
		31:16																	0000
90D0	ADC1BUF6	15:0							ADC Res	sult Word 6	(ADC1BUF	6<31:0>)							0000
		31:16																	0000
90E0	ADC1BUF7	15:0							ADC Res	sult Word 7	(ADC1BUF	7<31:0>)							0000
		31:16																	0000
90F0	ADC1BUF8	15:0							ADC Res	sult Word 8	(ADC1BUF	8<31:0>)							0000
		31:16																	0000
9100	ADC1BUF9	15:0							ADC Res	sult Word 9	(ADC1BUF	9<31:0>)							0000

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details. Note 1:

FIGURE 31-23: EJTAG TIMING CHARACTERISTICS


TABLE 31-43: EJTAG TIMING REQUIREMENTS

АС СНА	RACTERISTI	cs	(unles		ise state	anditions: 2.3V to 3.6V ed) $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp		
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions		
EJ1	Ттсксүс	TCK Cycle Time	25	—	ns	—		
EJ2	Ттскнідн	TCK High Time	10	—	ns	—		
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—		
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_		
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	_	ns	—		
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK		5	ns	—		
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	—		
EJ8	TTRSTLOW	TRST Low Time	25	—	ns			
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output			ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units								
Dimension	MIN	NOM	MAX						
Contact Pitch	E		0.50 BSC						
Pad Clearance	G1	0.20							
Pad Clearance	G2	0.20							
Pad Clearance	G3	0.20							
Pad Clearance	G4	0.20							
Contact to Center Pad Clearance (X4)	G5	0.30							
Optional Center Pad Width	T2			6.60					
Optional Center Pad Length	W2			6.60					
Optional Center Pad Chamfer (X4)	W3		0.10						
Contact Pad Spacing	C1		8.50						
Contact Pad Spacing	C2		8.50						
Contact Pad Width (X124)	X1			0.30					
Contact Pad Length (X124)	X2			0.30					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A