

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f256ht-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 124-PIN DEVICES

		-				
124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4,5)				A3	4
	Y A17		D 40	B29		
			B13	220		Conductive
						Thermal Pad
			B1		B41	
			E	856		A51
	FIG3ZWIAS/UF31ZL	A1				
			,	69		
	Polarity I	ndicator		100		
Package Bump #	Full Pin Name	Package Bump #			Full Pin	Name
A1	No Connect	A38	SDA1	/RG3		
A2	RG15	A39	SCL2/	'RA2		
A3	Vss	A40	TDI/C	TED9/RA4		
A4	AN23/PMD6/RE6	A41	Vdd			
A5	RPC1/RC1	A42	OSC2	/CLKO/RC1	5	
A6	RPC3/RC3	A43	Vss			
A7	AN16/C1IND/RPG6/SCK2/PMA5/RG6	A44	RPA1	5/RA15		
A8	AN18/C2IND/RPG8/PMA3/RG8	A45	RPD9	/RD9		
A9	AN19/C2INC/RPG9/PMA2/RG9	A46	RPD1	1/PMCS1/R	D11	
A10	VDD	A47	SOSC	I/RPC13/RC	C13	
A11	RPE8/RE8	A48	Vdd			
A12	AN5/C1INA/RPB5/RB5	A49	No Co	nnect		
A13	PGED3/AN3/C2INA/RPB3/RB3	A50	No Co	nnect		
A14	VDD	A51	No Co	nnect		
A15	PGEC1/AN1/RPB1/CTED12/RB1	A52	AN24/	RPD1/RD1		
A16	No Connect	A53	AN26/	RPD3/RD3		
A17	No Connect	A54	PMD1	3/RD13		
A18	No Connect	A55	RPD5	PMRD/RD5	5	
A19	No Connect	A56	PMD1	5/RD7		
A20	PGEC2/AN6/RPB6/RB6	A57	No Co	nnect		
A21	VREF-/CVREF-/PMA7/RA9	A58	No Co	nnect		
A22	AVDD	A59	VDD			
A23	AN8/RPB8/CTED10/RB8	A60	RPF1/	PMD10/RF	1	
A24	CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	A61	RPG0	/PMD8/RG0)	
A25	Vss	A62	TRD3	CTED8/RA	7	
A26	TCK/CTED2/RA1	A63	Vss			
A27	RPF12/RF12	A64	PMD1	/RE1		
A28	AN13/PMA10/RB13	A65	TRD1	/RG12		
A29	AN15/RPB15/OCFB/CTED6/PMA0/RB15	A66	AN20/	PMD2/RE2		
A30	VDD	A67	AN21/	PMD4/RE4		
A31	RPD15/RD15	A68	No Co	nnect		
A32	RPF5/PMA8/RF5	B1	Vdd			
A33	No Connect	B2	AN22/	RPE5/PMD	5/RE5	
A34	No Connect	B3	AN27/	PMD7/RE7		
A35	RPF3/RF3	B4	RPC2	/RC2		
A36	RPF2/RF2	B5	RPC4	/CTED7/RC	4	
A37	RPF7/RF7	B6	AN17/	C1INC/RPG	7/PMA4/RG	7

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (bump B30) and RPF7 (bump A37) are only remappable for input functions.

4: Shaded package bumps are 5V tolerant.

5: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

	Pin Number							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description		
RB0	16	25	B14	I/O	ST			
RB1	15	24	A15	I/O	ST	_		
RB2	14	23	B13	I/O	ST			
RB3	13	22	A13	I/O	ST			
RB4	12	21	B11	I/O	ST	_		
RB5	11	20	A12	I/O	ST	_		
RB6	17	26	A20	I/O	ST	_		
RB7	18	27	B16	I/O	ST	PORTB is a hidirectional I/O port		
RB8	21	32	A23	I/O	ST			
RB9	22	33	B19	I/O	ST			
RB10	23	34	A24	I/O	ST			
RB11	24	35	B20	I/O	ST			
RB12	27	41	B23	I/O	ST			
RB13	28	42	A28	I/O	ST			
RB14	29	43	B24	I/O	ST			
RB15	30	44	A29	I/O	ST			
RC1	-	6	A5	I/O	ST			
RC2	-	7	B4	I/O	ST			
RC3	-	8	A6	I/O	ST			
RC4	-	9	B5	I/O	ST	POPTC is a hidiractional I/O part		
RC12	39	63	B34	I/O	ST			
RC13	47	73	A47	I/O	ST			
RC14	48	74	B40	I/O	ST			
RC15	40	64	A42	I/O	ST			
RD0	46	72	B39	I/O	ST			
RD1	49	76	A52	I/O	ST			
RD2	50	77	B42	I/O	ST			
RD3	51	78	A53	I/O	ST			
RD4	52	81	B44	I/O	ST	_		
RD5	53	82	A55	I/O	ST	_		
RD6	54	83	B45	I/O	ST	_		
RD7	55	84	A56	I/O	ST	PORTD is a hidirectional I/O port		
RD8	42	68	B37	I/O	ST			
RD9	43	69	A45	I/O	ST			
RD10	44	70	B38	I/O	ST	_		
RD11	45	71	A46	I/O	ST			
RD12		79	B43	I/O	ST			
RD13		80	A54	I/O	ST			
RD14		47	B26	I/O	ST			
RD15	_	48	A31	I/O	ST			
Legend:	CMOS = CI ST = Schmi TTL = TTL i	MOS compat itt Trigger inp input buffer	ible input or ou out with CMOS	itput levels	An O :	alog = Analog input P = Power = Output I = Input		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

		Pin Numb	er					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description		
U1CTS	PPS	PPS	PPS	I	ST	UART1 Clear to Send		
U1RTS	PPS	PPS	PPS	0	_	UART1 Ready to Send		
U1RX	PPS	PPS	PPS	I	ST	UART1 Receive		
U1TX	PPS	PPS	PPS	0	_	UART1 Transmit		
U2CTS	PPS	PPS	PPS	Ι	ST	UART2 Clear to Send		
U2RTS	PPS	PPS	PPS	0	—	UART2 Ready to Send		
U2RX	PPS	PPS	PPS	I	ST	UART2 Receive		
U2TX	PPS	PPS	PPS	0	_	UART2 Transmit		
U3CTS	PPS	PPS	PPS	Ι	ST	UART3 Clear to Send		
U 3RTS	PPS	PPS	PPS	0	_	UART3 Ready to Send		
U3RX	PPS	PPS	PPS	I	ST	UART3 Receive		
U3TX	PPS	PPS	PPS	0	_	UART3 Transmit		
U4CTS	PPS	PPS	PPS	Ι	ST	UART4 Clear to Send		
U4RTS	PPS	PPS	PPS	0	_	UART4 Ready to Send		
U4RX	PPS	PPS	PPS	I	ST	UART4 Receive		
U4TX	PPS	PPS	PPS	0	_	UART4 Transmit		
U5CTS ⁽³⁾	—	PPS	PPS	Ι	ST	UART5 Clear to Send		
U5RTS ⁽³⁾	_	PPS	PPS	0	_	UART5 Ready to Send		
U5RX ⁽³⁾	—	PPS	PPS	I	ST	UART5 Receive		
U5TX ⁽³⁾	—	PPS	PPS	0	—	UART5 Transmit		
SCK1	35 ⁽¹⁾ , 50 ⁽²⁾	55 ⁽¹⁾ , 70 ⁽²⁾	B30 ⁽¹⁾ , B38 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for SPI1		
SDI1	PPS	PPS	PPS	0	_	SPI1 Data In		
SDO1	PPS	PPS	PPS	I/O	ST	SPI1 Data Out		
SS1	PPS	PPS	PPS	I/O	—	SPI1 Slave Synchronization for Frame Pulse I/O		
SCK2	4	10	A7	I/O	ST	Synchronous Serial Clock Input/Output for SPI2		
SDI2	PPS	PPS	PPS	0	_	SPI2 Data In		
SDO2	PPS	PPS	PPS	I/O	ST	SPI2 Data Out		
SS2	PPS	PPS	PPS	I/O	—	SPI2 Slave Synchronization for Frame Pulse I/O		
SCL1	37 ⁽¹⁾ , 44 ⁽²⁾	57 ⁽¹⁾ , 66 ⁽²⁾	B31 ⁽¹⁾ , B36 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for I2C1		
SDA1	36 ⁽¹⁾ , 43 ⁽²⁾	56 ⁽¹⁾ , 67 ⁽²⁾	A38 ⁽¹⁾ , A44 ⁽²⁾	I/O	ST	Synchronous Serial Data Input/Output for I2C1		
SCL2	32	58	A39	I/O	ST	Synchronous Serial Clock Input/Output for I2C2		
SDA2	31	59	B32	I/O	ST	Synchronous Serial Data Input/Output for I2C2		
TMS	23	17	B9	Ι	ST	JTAG Test Mode Select Pin		
ТСК	27	38	A26	Ι	ST	JTAG Test Clock Input Pin		
TDI	28	60	A40	Ι		JTAG Test Clock Input Pin		
TDO	24	61	B33	0		JTAG Test Clock Output Pin		
RTCC	42	68	B37	0		Real-Time Clock Alarm Output		
Leaend:	CMOS = CMOS compatible input or output Analog = Analog input P = Power							

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—		—	—			
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—		—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8	BMXDKPBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0		BMXDKPBA<7:0>									

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

REGIST	ER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)
bit 9-8	IS1<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP0<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 1-0	IS0<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit
Note.	definitions.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

Following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—			_			—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:10	—	—	-	—	—	—	-	—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	—	—	-					—	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	BDTPTRH<23:16>								

REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** BDT Base Address bits This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:10	—	—	—	—	—	—	—	—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	—	—	—	—	—	—	—	—	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	BDTPTRU<31:24>								

REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: BDT Base Address bits

This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin RPnR SFR		RPnR bits	RPnR Value to Peripheral Selection		
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect		
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS		
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX		
RPB15	RPB15R	RPB15R<3:0>	10011 = REFCLKO		
RPD4	RPD4R	RPD4R<3:0>	0101 = Reserved		
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved		
RPE3	RPE3R	RPE3R<3:0>	0111 = <u>SS1</u>		
RPB7	RPB7R	RPB7R<3:0>	1000 = SDO1		
RPB2	RPB2R	RPB2R<3:0>	1001 = Reserved		
RPF12 ⁽⁴⁾	RPF12R	RPF12R<3:0>	1010 = Reserved		
RPD12 ⁽⁴⁾	RPD12R	RPD12R<3:0>	1011 = 0C5		
RPF8 ⁽⁴⁾	RPF8R	RPF8R<3:0>	1100 = Reserved 1101 = C1OUT		
RPC3 ⁽⁴⁾	RPC3R	RPC3R<3:0>	1110 = Reserved		
RPE9 ⁽⁴⁾	RPE9R	RPE9R<3:0>	1111 = Reserved		
RPD1	RPD1R	RPD1R<3:0>	0000 = <u>No Connect</u>		
RPG9	RPG9R	RPG9R<3:0>	0001 = U2RTS		
RPB14	RPB14R	RPB14R<3:0>	10010 = Reserved		
RPD0	RPD0R	RPD0R<3:0>	$0100 = U5TX^{(4)}$		
RPD8	RPD8R	RPD8R<3:0>	0101 = Reserved		
RPB6	RPB6R	RPB6R<3:0>	0110 = SS2		
RPD5	RPD5R	RPD5R<3:0>	10111 = Reserved		
RPF3 ⁽³⁾	RPF3R	RPF3R<3:0>	1001 = Reserved		
RPF6 ⁽¹⁾	RPF6R	RPF6R<3:0>	1010 = Reserved		
RPF13 ⁽⁴⁾	RPF13R	RPF13R<3:0>	1011 = OC2		
RPC2 ⁽⁴⁾	RPC2R	RPC2R<3:0>	1100 = OC1 1101 = Reserved		
RPE8 ⁽⁴⁾	RPE8R	RPE8R<3:0>	1110 = Reserved		
RPF2 ⁽⁵⁾	RPF2R	RPF2R<3:0>	1111 = Reserved		

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

	PIC32MIX430F064L, PIC32MIX430F128L, PIC32MIX430F236L, AND PIC32MIX470F512L DEVICES ONLY																		
ess		â								Bit	s								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600		31:16	—	_	_	—	_	—	_	_	-	_	_	_	_	—	_	_	0000
0000	ANGLEG	15:0	—	—	—	—	—	—	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_	—	—	—	_	01C0
6610	TRISG	31:16	_	—	—	—	_		—	_	_	—	—		—	—	—	_	0000
0010	111100	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—		TRISG9	TRISG8	TRISG7	TRISG6	—	—	TRISG3	TRISG2	TRISG1	TRISG0	xxxx
6620	PORTG	31:16	—	—	—	—	—		—	—		—	—	—	—	—	—	—	0000
0020	1 on to	15:0	RG15	RG14	RG13	RG12	—		RG9	RG8	RG7	RG6	—	—	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6630	LATG	31:16	_	—	—	—	—	—	—	—	—	—	—	_	—	—	—	-	0000
	2.10	15:0	LATG15	LATG14	LATG13	LATG12	_	—	LATG9	LATG8	LATG7	LATG6	_	-	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16		—	—	—	_			_	—		_		_	—	—	_	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12	—	—	ODCG9	ODCG8	ODCG7	ODCG6	—	—	ODCG3	ODCG2	ODCG1	ODCG0	XXXX
6650	CNPUG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	—	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_		CNPUG3	CNPUG2	CNPUG1	CNPUG0	xxxx
6660	CNPDG	31:16	—	—	—	—	_	_	—		—	—	_		—	—	-	—	0000
		15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	_	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_		CNPDG3	CNPDG2	CNPDG1	CNPDG0	xxxx
6670	CNCONG	31:16	_	_	-	—	_					_	_		_	_			0000
		15:0	ON	_	SIDL	—	_			_	_	_	_			_	_		0000
6680	CNENG	31:16	-	-	-	-	_		-	-	-	-	_		-	-	-	-	0000
		15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	—	CNIEG9	CNIEG8	CNIEG/	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	XXXX
6600	CNISTATO	31:16	-	-	-	-	_	—	-	-	-	-	_	_	-	-	-	-	0000
0090	CINGTATE	15:0	STATG15	STATG14	STATG13	CN STATG12	—	—	STATG9	STATG8	STATG7	STATG6	_	—	STATG3	STATG2	CN STATG1	STATG0	xxxx

TABLE 12-15: PORTG REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit only implemented on devices without a USB module.

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- · Synchronous external 16-bit timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- · Synchronous internal 32-bit timer
- · Synchronous internal 32-bit gated timer
- · Synchronous external 32-bit timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 in 16-bit mode, Timer2/ 3 in 32-bit mode)
- Fast bit manipulation using CLR, SET, and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

REGIS	TER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)					
bit 17	SPIFE: F	rame Sync Puls	e Edge Select bit (Framed SPI mode only)					
	1 = Fran	ne synchronizati	on pulse coincides with the first bit clock					
1.1.40		ne synchronizati	on pulse precedes the first bit clock					
bit 16		1 = Enhanced Buffer mode is enabled						
	1 - Enna	I = Enhanced Buffer mode is enabled $0 = Enhanced Buffer mode is disabled$						
bit 15		Perinheral On h	it(1)					
bit io	1 = SPI	Peripheral is ena	abled					
	0 = SPI	Peripheral is dis	abled					
bit 14	Unimple	mented: Read a	as '0'					
bit 13	SIDL: St	op in Idle Mode I	bit					
	1 = Disc	ontinue operatio	n when CPU enters in Idle mode					
	0 = Con	tinue operation i	n Idle mode					
bit 12	DISSDO	Disable SDOx	pin bit					
	1 = SDC	Dx pin is not used	d by the module. Pin is controlled by associated PORT register					
bit 11		22 16 - 22/16 Pi	t Communication Select hite					
DIL 11-	When Al	JDFN = 1:						
	MODE32	2 MODE16	Communication					
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame					
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame					
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame					
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame					
		$\frac{\text{JDEN} = 0}{\text{NODE10}}$	O manufaction					
	MODE32	MODE16	Communication 32-bit					
	1 0	1	16-bit					
	0	0	8-bit					
bit 9	SMP: SF	PI Data Input Sar	nple Phase bit					
	Master m	node (MSTEN =	<u>1):</u>					
	1 = Inpu	t data sampled a	at end of data output time					
	0 = Inpu Slave mo	t data sampled a $de (MSTEN = 0$	at mode of data output time					
	SMP value	ue is ignored wh	en SPI is used in Slave mode. The module always uses SMP = 0.					
bit 8	CKE: SF	PI Clock Edge Se	elect bit ⁽³⁾					
	1 = Seria	al output data ch	anges on transition from active clock state to Idle clock state (see CKP bit)					
	0 = Seri	al output data ch	anges on transition from Idle clock state to active clock state (see CKP bit)					
bit 7	SSEN: S	lave Select Ena	ble (Slave mode) bit					
	$1 = \frac{SSX}{SSX}$	pin used for Sla	ve mode					
hit 6	0 - 33X	pin not used for	slave mode, pin controlled by port function.					
DILO	1 = Idle	state for clock is	a high level: active state is a low level					
	0 = Idle	state for clock is	a low level; active state is a high level					
bit 5	MSTEN:	Master Mode E	nable bit					
	1 = Mas	ter mode						
	0 = Slav	e mode						
	4 \A <i>C</i>							
Note		sing the 1:1 PBC	LK divisor, the user software should not read or write the peripheral's SFRs in the roly following the instruction that clears the medule's ON bit					
	JIJULN 2. This hit?		en when the ON hit = 0					
4	2. 1115 UIL (2. This bit i		En when the ON Dit = 0. a Framed SDI mode. The user should program this bit to (a) for the Framed SDI.					
•	mode (F	RMEN = 1).	e riamed or rimode. The user should program this bit to 0 for the riamed SPI					
	4: When A	UDEN = 1. the S	PI module functions as if the CKP bit is equal to '1'. regardless of the actual value					
	of CKP.	_,						

REGISTE	R 19-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
31:24	—	—	—	—	—	—	—	ADM_EN		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	ADDR<7:0>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1		
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT		
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0		
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

zogonai			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.

bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)

- 1 = Transmit buffer is full
- 0 = Transmit buffer is not full, at least one more character can be written

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾
 - 1111 = Wait of 16 Трв • •
 - 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)
- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 TPB 10 = Wait of 3 TPB 01 = Wait of 2 TPB
 - 00 = Wait of 1 Трв (default)

For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB 00 = Wait of 0 TPB (default)

- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB = 1 TPB cycle, WAITE = 0 TPB cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - **3:** These pins are active when MODE16 = 1 (16-bit mode).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P
31:24	—	—	—	CP	—	—	—	BWP
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
23:10	—	—	—	—	PWP<7:4>			
45.0	R/P	R/P	R/P	R/P	r-1	r-1	r-1	r-1
15:8		PWP<	<3:0>		—	—		-
7:0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P
	—	—	—	ICESE	_<1:0> JTAGEN ⁽¹⁾ DEBUG<1:0>			

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit	P = Programmable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 **Reserved:** Write '0'

bit 30-29 Reserved: Write '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device.

1 = Protection is disabled

0 = Protection is enabled

bit 27-25 Reserved: Write '1'

bit 24 BWP: Boot Flash Write-Protect bit

Prevents boot Flash memory from being modified during code execution.

1 = Boot Flash is writable

0 = Boot Flash is not writable

bit 23-20 Reserved: Write '1'

bit 19-12 **PWP<7:0>:** Program Flash Write-Protect bits

Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages.

11111111 = Disabled
11111110 = 0xBD00_0FFF
11111101 = 0xBD00_1FFF
11111100 = 0xBD00_2FFF
11111011 = 0xBD00_3FFF
11111010 = 0xBD00_4FFF
11111001 = 0xBD00_5FFF
11111000 = 0xBD00_6FFF
11110111 = 0xBD00_7FFF
11110110 = 0xBD00_8FFF
11110101 = 0xBD00_9FFF
11110100 = 0xBD00_AFFF
11110011 = 0xBD00_BFFF
11110010 = 0xBD00_CFFF
11110001 = 0xBD00_DFFF
11110000 = 0xBD00_EFFF
11101111 = 0xBD00_FFFF
01111111 = 0xBD07_FFFF

Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	-0.3V to +6.0V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	-0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum output current sourced/sunk by any 4x I/O pin	15 mA
Maximum output current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sunk by all ports	150 mA
Maximum current sourced by all ports (Note 2)	150 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

DC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symb.	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Max. Units Conditions			
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(8,9,10)	mA	Pins with Analog functions. Exceptions: [SOSCI, SOSCO, OSC1, D+, D-] = 0 mA max. Digital 5V tolerant desig- nated pins (VIH < $5.5V$) ⁽⁹⁾ . Exceptions: [All] = 0 mA max. Digital non-5V tolerant desig- nated pins. Exceptions: [N/A] = 0 mA max.		
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽¹¹⁾		+20(11)	mA	Absolute instantaneous sum of all \pm input injection cur- rents from all I/O pins (IICL + IICH) $\leq \sum$ IICT		

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
- 7: VIL source < (Vss 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)	X2			0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A