

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

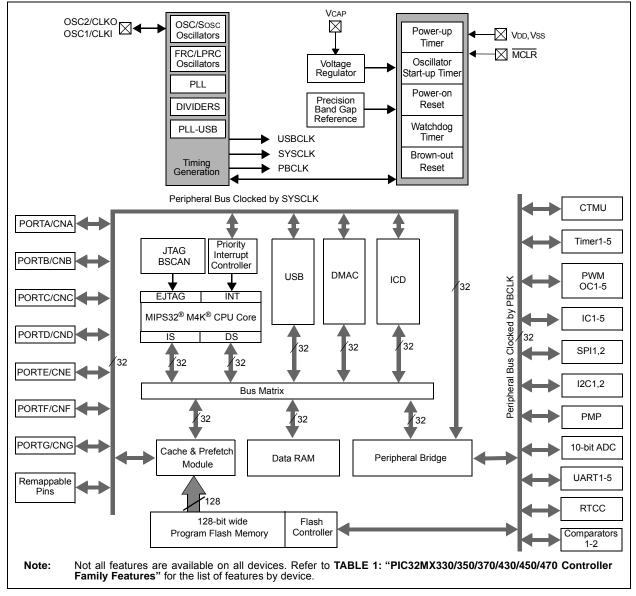
Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f256ht-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). This document contains device-specific information for PIC32MX330/350/370/430/450/470 devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX330/350/ 370/430/450/470 family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX330/350/370/430/450/470 BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
	U-0	U-0	U-0	U-0	U-0	R/W-1	U-0	U-0				
31:24	_	—	—	—	—	BMX CHEDMA	—	—				
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23:16	_	—	—	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	—	—	_	_	—	—	—				
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1				
7:0	_	BMX WSDRM	—	—	—	E	3MXARB<2:0	>				

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Legend:

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-27 Unimplemented: Read as '0'

- bit 26 BMXCHEDMA: BMX PFM Cacheability for DMA Accesses bit
 - 1 = Enable program Flash memory (data) cacheability for DMA accesses (requires cache to have data caching enabled)
 - 0 = Disable program Flash memory (data) cacheability for DMA accesses (hits are still read from the cache, but misses do not update the cache)

bit 25-21 Unimplemented: Read as '0'

bit 20 BMXERRIXI: Enable Bus Error from IXI bit

- 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus
- 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus

bit 19 **BMXERRICD:** Enable Bus Error from ICD Debug Unit bit

- 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD
- 0 = Disable bus error exceptions for unmapped address accesses initiated from ICD

bit 18 BMXERRDMA: Bus Error from DMA bit

- 1 = Enable bus error exceptions for unmapped address accesses initiated from DMA
- 0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
- bit 17 BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
 - 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access
 - 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
- bit 16 BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
 - 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access
 - 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access

bit 15-7 Unimplemented: Read as '0'

- bit 6 BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
 - $\ensuremath{\mathtt{1}}$ = Data RAM accesses from CPU have one wait state for address setup

0 = Data RAM accesses from CPU have zero wait states for address setup

bit 5-3 Unimplemented: Read as '0'

- bit 2-0 BMXARB<2:0>: Bus Matrix Arbitration Mode bits
 - 111 = Reserved (using these configuration modes will produce undefined behavior)
 - :

011 = Reserved (using these configuration modes will produce undefined behavior)

- 010 = Arbitration Mode 2
- 001 = Arbitration Mode 1 (default)
- 000 = Arbitration Mode 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0									
24.24	R	R	R	R	R	R	R	R									
31:24	BMXDRMSZ<31:24>																
00.40	R	R	R	R	R	R	R	R									
23:16	BMXDRMSZ<23:16>																
45.0	R	R	R	R	R	R	R	R									
15:8	BMXDRMSZ<15:8>																
7.0	R	R	R	R	R	R	R	R									
7:0				BMXDR	MSZ<7:0>			BMXDRMSZ<7:0>									

BMXDRMSZ: DATA RAM SIZE REGISTER **REGISTER 4-5:**

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM 0x00020000 = Device has 128 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	_	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	_	_	_	_	BMXPUPBA<19:16>						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0			
15:8		BMXPUPBA<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				BMXPU	PBA<7:0>						

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-20 Unimplemented: Read as '0'

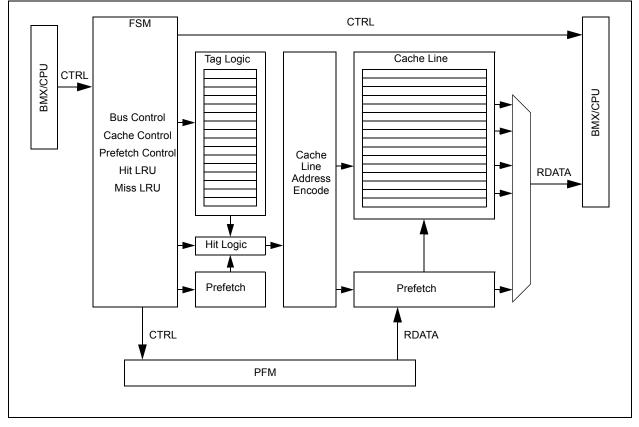
bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits Value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

9.0 PREFETCH CACHE


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Prefetch Cache" (DS60001119), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching.

9.1 Features

- 16 fully associative lockable cache lines
- 16-byte cache lines
- Up to four cache lines allocated to data
- Two cache lines with address mask to hold repeated instructions
- · Pseudo LRU replacement policy
- · All cache lines are software writable
- · 16-byte parallel memory fetch
- · Predictive instruction prefetch

A simplified block diagram of the Prefetch Cache module is illustrated in Figure 9-1.

FIGURE 9-1: PREFETCH CACHE MODULE BLOCK DIAGRAM

9.2 Control Registers

TABLE 9-1: PREFETCH REGISTER MAP

ess										Bit	s								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	CHECON ⁽¹⁾	31:16	—	_	—	—		_	—	—	_		—		—	—		CHECOH	0000
1000		15:0	—	_		—	_	_	DCSZ	<1:0>	—		PREFE	N<1:0>	—	P	FMWS<2:0)>	0007
4010	CHEACC ⁽¹⁾		CHEWEN	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	—	_	—	—	—	_	—	—	—		—	—		CHEID	X<3:0>		00xx
4020	CHETAG ⁽¹⁾	31:16	LTAGBOOT	—	—	—	—	—	—	—				LTAG<	:23:16>				xxx0
1020								LTAG<	15:4>						LVALID	LLOCK	LTYPE	—	xxx2
4030	CHEMSK ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
		15:0					LN	1ASK<15:5	>					—	—	_	—	—	xxxx
4040	CHEW0	31:16		CHEW0<31:0>									XXXX						
		15:0																	
4050	CHEW1	31:16								CHEW1	<31:0>								xxxx
		15:0																	xxxx
4060	CHEW2	31:16								CHEW2	<31:0>								xxxx
		15:0																	XXXX
4070	CHEW3	31:16								CHEW3	<31:0>								XXXX
		15:0			_	_	_	_					CH	IELRU<24:1	16>				XXXX
4080	CHELRU	31:16 15:0							_	CHELRU	<15.0>		CI		10-				0000
										CHELRU	<15.0>								0000
4090	CHEHIT	31:16 15:0								CHEHIT	<31:0>								xxxx
																			XXXX
40A0	CHEMIS	31:16 15:0								CHEMIS	<31:0>								xxxx
		31:16																	xxxx
40C0	CHEDEADT	15:0								CHEPFAB	T<31:0>								xxxx xxxx
Legen			n value on Re	sot = u	nimplomon	tod road as	: '0' Reset	values are	shown in h	avadocimal									XXXX

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24					_		-	_		
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	-	_	-	-	_	—	_	_		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	LMASK<10:3>									
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
7:0		_MASK<2:0>		_	_	_	_	—		

REGISTER 9-4: CHEMSK: CACHE TAG MASK REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	able bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-5 LMASK<10:0>: Line Mask bits
 - 1 = Enables mask logic to force a match on the corresponding bit position in the LTAG<19:0> bits (CHETAG<23:4>) and the physical address.
 - 0 = Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B. Disables mask logic.
- bit 4-0 Unimplemented: Write '0'; ignore read

			••••	•							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24	CHEW0<31:24>										
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16	CHEW0<23:16>										
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8	CHEW0<15:8>										
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0	CHEW0<7:0>										

REGISTER 9-5: CHEW0: CACHE WORD 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **CHEW0<31:0>:** Word 0 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

PIC32MX330/350/370/430/450/470

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		-	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	—	—	_	—	_	_
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHSSIZ	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHSSIZ	<7:0>			

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	—	_	_	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHDSIZ	<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				CHDSIZ	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Periphera Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS 0011 = Reserved
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved 1000 = Reserved
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5	RPB5R	RPB5R<3:0>	1010 = Reserved
RPC1 ⁽⁴⁾	RPC1R	RPC1R<3:0>	1011 = OC3
RPD14 ⁽⁴⁾	RPD14R	RPD14R<3:0>	1100 = Reserved 1101 = C2OUT
RPG1 ⁽⁴⁾	RPG1R	RPG1R<3:0>	1110 = Reserved
RPA14 ⁽⁴⁾	RPA14R	RPA14R<3:0>	1111 = Reserved
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved
RPD11	RPD11R	RPD11R<3:0>	
RPF0	RPF0R	RPF0R<3:0>	0100 = 05RTS(*)
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved
RPF3 ⁽²⁾	RPF3R	RPF3R<3:0>	1010 = Reserved
RPC4 ⁽⁴⁾	RPC4R	RPC4R<3:0>	1011 = OC4 1100 = Reserved
RPD15 ⁽⁴⁾	RPD15R	RPD15R<3:0>	1100 - Reserved
RPG0 ⁽⁴⁾	RPG0R	RPG0R<3:0>	1110 = Reserved
RPA15 ⁽⁴⁾	RPA15R	RPA15R<3:0>	1111 = Reserved

TABLE 12-2: OUTPUT PIN SELECTION

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

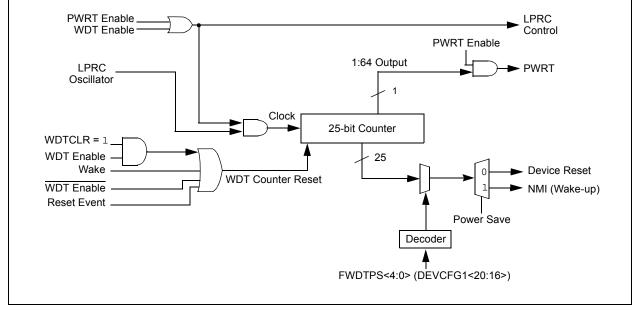
TABLE 12-16:PORTG REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess		6								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	_	-	_	_	_		—	_	_	—			_	—	_	_	0000
0000	ANSELG	15:0		-	-	-	-		ANSELG9	ANSELG8	ANSELG7	ANSELG6			_	—	—	—	01C0
6610	TRISG	31:16	_	-	_	_	_		—	—	-	—	_	_	—	—	_	—	0000
0010	TRISO	15:0	_	_	_	_	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	_	_	xxxx
6620	PORTG	31:16	_		-	_	-		_	_		—	_		_	—	_	_	0000
0020	FURIO	15:0	_		-	_	-		RG9	RG8	RG7	RG6	_		RG3 ⁽²⁾	RG2 ⁽²⁾	_	_	xxxx
6630	LATG	31:16	_		-	—			—	—		—	-		—	—	—	—	0000
0030	LAIO	15:0	_	—	—	—	—	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	—	—	xxxx
6640	ODCG	31:16	_	—	—	—	—	_	—	—	_	—	_	_	—	—	—	—	0000
0040	0000	15:0	_	—	—	—	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	—	—	xxxx
6650	CNPUG	31:16	—	_	—	—	—		—	—		—	—		—	—	_	—	0000
0000		15:0	—	_	—	—	—		CNPUG9	CNPUG8	CNPUG7	CNPUG6	—		CNPUG3	CNPUG2	_	—	xxxx
6660	CNPDG	31:16	—	_	—	—	_		—	—		—	—	_	—	—	_	—	0000
0000		15:0	—	_	—	—	_		CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	_	CNPDG3	CNPDG2	_	—	xxxx
6670	CNCONG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0070	oncono	15:0	ON	_	SIDL	—	_		—	_		—	—	_	—	—	_	—	0000
6680	CNENG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0000	ONLING	15:0	—	_	—	—	_		CNIEG9	CNIEG8	CNIEG7	CNIEG6	—	_	CNIEG3	CNIEG2	_	—	xxxx
		31:16	—	_	—	—	—		—	_	_	—	—		—	—	_	—	0000
6690	CNSTATG	15:0	—	-	_	—	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	—		CN STATG3	CN STATG2	—	—	xxxx

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.


15.0 WATCHDOG TIMER (WDT)

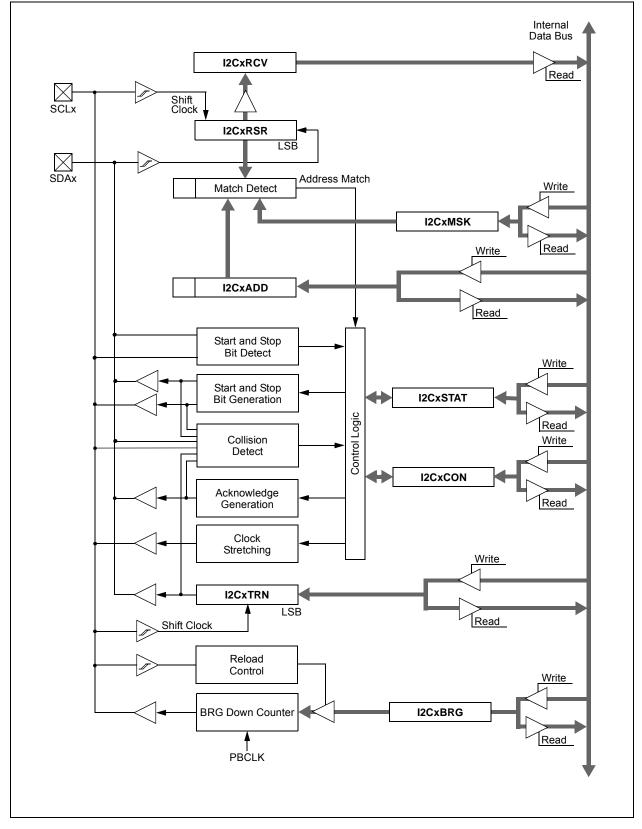
Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	_	—	_	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	—	_	_	—	_	—	—
7.0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
7:0			S	WDTPS<4:0	>		WDTWINEN	WDTCLR

REGISTER 15-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER


Legend:	y = Values set from Configuration bits on POR						
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Watchdog Timer Enable bit^(1,2)
 - 1 = Enables the WDT if it is not enabled by the device configuration
 - 0 = Disable the WDT if it was enabled in software
- bit 14-7 Unimplemented: Read as '0'
- bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> of Configuration bits.
- bit 1 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
- bit 0 WDTCLR: Watchdog Timer Reset bit
 - 1 = Writing a '1' will clear the WDT
 - 0 = Software cannot force this bit to a '0'
- **Note 1:** A read of this bit results in a '1' if the Watchdog Timer is enabled by the device configuration or software.
 - 2: When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

FIGURE 19-1: I²C BLOCK DIAGRAM

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess		0									Bits								8
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0200	RTCCON	31:16	_	_	_	-	_	— — CAL<9:0>								0000			
0200	RICCON	15:0	ON	_	SIDL	—	_	-		_	RTSECSEL	RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	—	_	_	—	_	-		_	—	_	_	_	—	_	—	—	0000
0210	RICALNI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>					ARP1	[<7:0>				0000
0220	RTCTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0220		15:0		SEC1	0<3:0>			SEC07	1<3:0>		—	_	_	_	_	—	—	—	xx00
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>		MONTH10<3:0>				MONTH01<3:0>				xxxx
0230	RIODAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	_	_	_		WDAY0	1<3:0>		xx00
0240	ALRMTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC1	0<3:0>			SEC07	1<3:0>		—	_	_	_	_	—	—	—	xx00
0250	ALRMDATE	31:16	_	_	_	_	—	—	—	_		MONTH10	<3:0>			MONTH	01<3:0>		00xx
0200		15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	_	_	_		WDAY0	1<3:0>		xx0x

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P
31:24	_	—	—	CP	—	—	—	BWP
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
23:16	—	—	—	—		PWP	<7:4>	
45.0	R/P	R/P	R/P	R/P	r-1	r-1	r-1	r-1
15:8		PWP<	<3:0>		—	—	_	—
7.0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P
7:0		_	—	ICESE	L<1:0>	JTAGEN ⁽¹⁾	DEBU	G<1:0>

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit	r = Reserved bit P = Programmable bit					
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31 **Reserved:** Write '0'

bit 30-29 Reserved: Write '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device.

1 = Protection is disabled

0 = Protection is enabled

bit 27-25 Reserved: Write '1'

bit 24 BWP: Boot Flash Write-Protect bit

Prevents boot Flash memory from being modified during code execution.

1 = Boot Flash is writable

0 = Boot Flash is not writable

bit 23-20 Reserved: Write '1'

bit 19-12 **PWP<7:0>:** Program Flash Write-Protect bits

Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages.

11111111 = Disabled
11111110 = 0xBD00_0FFF
11111101 = 0xBD00_1FFF
11111100 = 0xBD00_2FFF
11111011 = 0xBD00_3FFF
11111010 = 0xBD00_4FFF
11111001 = 0xBD00_5FFF
11111000 = 0xBD00_6FFF
11110111 = 0xBD00_7FFF
11110110 = 0xBD00 8FFF
11110101 = 0xBD00_9FFF
11110100 = 0xBD00_AFFF
11110011 = 0xBD00 BFFF
11110010 = 0xBD00 CFFF
11110001 = 0xBD00 DFFF
11110000 = 0xBD00 EFFF
11101111 = 0xBD00 FFFF
. –
01111111 = 0xBD07 FFFF
_

Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +6.0V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum output current sourced/sunk by any 4x I/O pin	15 mA
Maximum output current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sunk by all ports	150 mA
Maximum current sourced by all ports (Note 2)	150 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

TABLE 31-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments	
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.	_		10	μs	See Note 1	
D313	DACREFH	CVREF Input Voltage	AVss		AVDD	V	CVRSRC with CVRSS = 0	
		Reference Range	VREF-		VREF+	V	CVRSRC with CVRSS = 1	
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size	
			0.25 x DACREFH	—	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/ 32 step size	
D315	DACRES	Resolution	_	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>	
			—		DACREFH/32		CVRCON <cvrr> = 0</cvrr>	
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>	
			_		1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>	

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 31-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

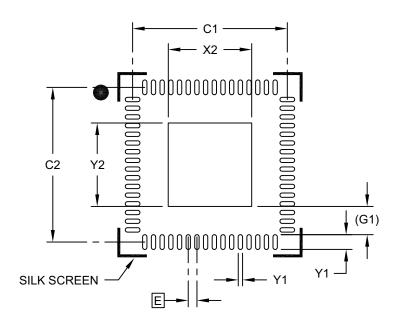
DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments	
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (3 ohm). Typical voltage on the VCAP pin is 1.8V.	

TABLE 31-35: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS ⁽⁵⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
Device \$	Supply								
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	_	Lesser of VDD + 0.3 or 3.6	V	_		
AD02	AVss	Module Vss Supply	Vss	—	Vss + 0.3	V	_		
Referen	ce Inputs								
AD05	Vrefh	Reference Voltage High	AVss + 2.0	—	AVdd	V	(Note 1)		
AD05a			2.5	—	3.6	V	VREFH = AVDD (Note 3)		
AD06	Vrefl	Reference Voltage Low	AVss	—	VREFH – 2.0	V	(Note 1)		
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	-	AVDD	V	(Note 3)		
AD08	IREF	Current Drain	_	250 —	400 3	μΑ μΑ	ADC operating ADC off		
Analog	Input	·							
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—		
AD13	Vinl	Absolute Vın∟ Input Voltage	AVss – 0.3	—	AVDD/2	V	—		
AD14	Vin	Absolute Input Voltage	AVss – 0.3	—	AVDD + 0.3	V	_		
AD15		Leakage Current	_	+/- 0.001	+/-0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3.3V$ Source Impedance = 10 k Ω		
AD17	Rin	Recommended Impedance of Analog Voltage Source		—	5K	Ω	(Note 1)		
ADC Ac	curacy – N	leasurements with Exter	nal Vref+/Vr	EF-					
AD20c	Nr	Resolution	1	10 data bits		bits	—		
AD21c	INL	Integral Nonlinearity	> -1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.3V		
AD22c	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)		
AD23c	Gerr	Gain Error	> -1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.3V		
AD24n	EOFF	Offset Error	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.3V		
AD25c		Monotonicity	_	—	_	_	Guaranteed		

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.


3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.

64-Lead Very Thin Plastic Quad Flat, No Lead Package (RG) - 9x9x1.0 mm Body [QFN] 4.7x4.7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			4.80
Optional Center Pad Length	Y2			4.80
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.25
Contact Pad Length (X64)	Y1			0.85
Contact Pad to Center Pad (X64)	G1		1.625 REF	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2260A

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0959-5