

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx350f256l-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		er			,				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description			
CVREF-	15	28	A21	I	Analog	Comparator Voltage Reference (Low)			
CVREF+	16	29	B17	I	Analog	Comparator Voltage Reference (High)			
CVREFOUT	23	34	A24	I	Analog	Comparator Voltage Reference (Output)			
C1INA	11	20	A12	I	Analog				
C1INB	12	21	B11	I	Analog	Comparator 1 Inputs			
C1INC	5	11	B6	I	Analog				
C1IND	4	10	A7	I	Analog				
C2INA	13	22	A13	I	Analog				
C2INB	14	23	B13	I	Analog				
C2INC	8	14	A9	I	Analog	Comparator 2 Inputs			
C2IND	6	12	A8	I	Analog				
C10UT	PPS	PPS	PPS	0	—	Comparator 1 Output			
C2OUT	PPS	PPS	PPS	0	—	Comparator 2 Output			
PMALL	30	44	A29	0	TTL/ST	Parallel Master Port Address Latch Enable Low Byte			
PMALH	29	43	B24	0	TTL/ST	Parallel Master Port Address Latch Enable High Byte			
PMA0	30	44	A29	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)			
PMA1	29	43	B24	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)			
PMA2	8	14	A9	0	TTL/ST				
PMA3	6	12	A8	0	TTL/ST				
PMA4	5	11	B6	0	TTL/ST				
PMA5	4	10	A7	0	TTL/ST				
PMA6	16	29	B17	0	TTL/ST				
PMA7	22	28	A21	0	TTL/ST				
PMA8	32	50	A32	0	TTL/ST				
PMA9	31	49	B27	0	TTL/ST				
PMA10	28	42	A28	0	TTL/ST	Parallal Master Part data (Demultipleyed Master			
PMA11	27	41	B23	0	TTL/ST	mode) or Address/Data (Multiplexed Master modes)			
PMA12	24	35	B20	0	TTL/ST				
PMA13	23	34	A24	0	TTL/ST				
PMA14	45	71	A46	0	TTL/ST				
PMA15	44	70	B38	0	TTL/ST				
PMCS1	45	71	A46	0	TTL/ST				
PMCS2	44	70	B38	0	TTL/ST				
PMD0	60	93	B52	I/O	TTL/ST]			
PMD1	61	94	A64	I/O	TTL/ST]			
PMD2	62	98	A66	I/O	TTL/ST]			
Legend:	Ind: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input								

TARI E 1-1. PINOUT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
31.24	NVMKEY<31:24>									
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
23:10	NVMKEY<23:16>									
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
15:8	NVMKEY<15:8>									
7:0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
7:0				NVMK	EY<7:0>					

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	NVMADDR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	NVMADDR<23:16>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	NVMADDR<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				NVMA	DDR<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **NVMADDR<31:0>:** Flash Address bits Bulk/Chip/PFM Erase: Address is ignored Page Erase: Address identifies the page to erase Row Program: Address identifies the row to program Word Program: Address identifies the word to program

6.1 Reset Control Registers

TABLE 6-1: SYSTEM CONTROL REGISTER MAP

ess			Bits											ú					
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
E600	BCON	31:16	—	—	HVDR	—	—	—	—	—	_	_	—	—	—	—	—	—	0000
FOUU	RCON	15:0	_	—	_	_	_	_	CMR	VREGS	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR	xxxx ⁽²⁾
	DOMIDET	31:16	_	—	_	_	_	_	_	_	—	_	—	_	—	_	_	—	0000
FUIU	ROWROI	15:0	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

Intermed Course(1)	IBO #	Vector		Interrupt Bit Location					
Interrupt Source 7	IRQ #	#	Flag	Enable	Priority	Sub-priority	Interrupt		
CNB – PORTB Input Change Interrupt	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>	Yes		
CNC – PORTC Input Change Interrupt	46	33	IFS1<14>	IEC1<14>	IPC8<12:10>	IPC8<9:8>	Yes		
CND – PORTD Input Change Interrupt	47	33	IFS1<15>	IEC1<15>	IPC8<12:10>	IPC8<9:8>	Yes		
CNE – PORTE Input Change Interrupt	48	33	IFS1<16>	IEC1<16>	IPC8<12:10>	IPC8<9:8>	Yes		
CNF – PORTF Input Change Interrupt	49	33	IFS1<17>	IEC1<17>	IPC8<12:10>	IPC8<9:8>	Yes		
CNG – PORTG Input Change Interrupt	50	33	IFS1<18>	IEC1<18>	IPC8<12:10>	IPC8<9:8>	Yes		
PMP – Parallel Master Port	51	34	IFS1<19>	IEC1<19>	IPC8<20:18>	IPC8<17:16>	Yes		
PMPE – Parallel Master Port Error	52	34	IFS1<20>	IEC1<20>	IPC8<20:18>	IPC8<17:16>	Yes		
SPI2E – SPI2 Fault	53	35	IFS1<21>	IEC1<21>	IPC8<28:26>	IPC8<25:24>	Yes		
SPI2RX – SPI2 Receive Done	54	35	IFS1<22>	IEC1<22>	IPC8<28:26>	IPC8<25:24>	Yes		
SPI2TX – SPI2 Transfer Done	55	35	IFS1<23>	IEC1<23>	IPC8<28:26>	IPC8<25:24>	Yes		
U2E – UART2 Error	56	36	IFS1<24>	IEC1<24>	IPC9<4:2>	IPC9<1:0>	Yes		
U2RX – UART2 Receiver	57	36	IFS1<25>	IEC1<25>	IPC9<4:2>	IPC9<1:0>	Yes		
U2TX – UART2 Transmitter	58	36	IFS1<26>	IEC1<26>	IPC9<4:2>	IPC9<1:0>	Yes		
I2C2B – I2C2 Bus Collision Event	59	37	IFS1<27>	IEC1<27>	IPC9<12:10>	IPC9<9:8>	Yes		
I2C2S – I2C2 Slave Event	60	37	IFS1<28>	IEC1<28>	IPC9<12:10>	IPC9<9:8>	Yes		
I2C2M – I2C2 Master Event	61	37	IFS1<29>	IEC1<29>	IPC9<12:10>	IPC9<9:8>	Yes		
U3E – UART3 Error	62	38	IFS1<30>	IEC1<30>	IPC9<20:18>	IPC9<17:16>	Yes		
U3RX – UART3 Receiver	63	38	IFS1<31>	IEC1<31>	IPC9<20:18>	IPC9<17:16>	Yes		
U3TX – UART3 Transmitter	64	38	IFS2<0>	IEC2<0>	IPC9<20:18>	IPC9<17:16>	Yes		
U4E – UART4 Error	65	39	IFS2<1>	IEC2<1>	IPC9<28:26>	IPC9<25:24>	Yes		
U4RX – UART4 Receiver	66	39	IFS2<2>	IEC2<2>	IPC9<28:26>	IPC9<25:24>	Yes		
U4TX – UART4 Transmitter	67	39	IFS2<3>	IEC2<3>	IPC9<28:26>	IPC9<25:24>	Yes		
U5E – UART5 Error	68	40	IFS2<4>	IEC2<4>	IPC10<4:2>	IPC10<1:0>	Yes		
U5RX – UART5 Receiver	69	40	IFS2<5>	IEC2<5>	IPC10<4:2>	IPC10<1:0>	Yes		
U5TX – UART5 Transmitter	70	40	IFS2<6>	IEC2<6>	IPC10<4:2>	IPC10<1:0>	Yes		
CTMU – CTMU Event	71	41	IFS2<7>	IEC2<7>	IPC10<12:10>	IPC10<9:8>	Yes		
DMA0 – DMA Channel 0	72	42	IFS2<8>	IEC2<8>	IPC10<20:18>	IPC10<17:16>	No		
DMA1 – DMA Channel 1	73	43	IFS2<9>	IEC2<9>	IPC10<28:26>	IPC10<25:24>	No		
DMA2 – DMA Channel 2	74	44	IFS2<10>	IEC2<10>	IPC11<4:2>	IPC11<1:0>	No		
DMA3 – DMA Channel 3	75	45	IFS2<11>	IEC2<11>	IPC11<12:10>	IPC11<9:8>	No		
		Lowe	st Natural Or	der Priority					

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of available peripherals.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits
 - 111 = Clock is multiplied by 24
 - 110 = Clock is multiplied by 21
 - 101 = Clock is multiplied by 20
 - 100 = Clock is multiplied by 19
 - 011 = Clock is multiplied by 18
 - 010 = Clock is multiplied by 17
 - 001 = Clock is multiplied by 16
 - 000 =Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)

On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).

- bit 7 CLKLOCK: Clock Selection Lock Enable bit
 - If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):
 - 1 = Clock and PLL selections are locked
 - 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x): Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit⁽¹⁾
 - 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
- bit 4 **SLPEN:** Sleep Mode Enable bit
 - 1 = Device will enter Sleep mode when a WAIT instruction is executed
 - 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 CF: Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected
- **Note 1:** This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—		_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23:16	—	—	—	—	—	_	—	CHECOH
15.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15.0	—	—	—	—	—	_	DCSZ	2<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
7:0	_	_	PREFE	N<1:0>	_	PFMWS<2:0>		

REGISTER 9-1: CHECON: CACHE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Write '0'; ignore read

- bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
 - 1 = Invalidate all data and instruction lines
 - 0 = Invalidate all data lnes and instruction lines that are not locked
- bit 15-10 Unimplemented: Write '0'; ignore read
- bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
 - 11 = Enable data caching with a size of 4 Lines
 - 10 = Enable data caching with a size of 2 Lines
 - 01 = Enable data caching with a size of 1 Line
 - 00 = Disable data caching

Changing these bits induce all lines to be reinitialized to the "invalid" state.

bit 7-6 **Unimplemented:** Write '0'; ignore read

bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits

- 11 = Enable predictive prefetch for both cacheable and non-cacheable regions
- 10 = Enable predictive prefetch for non-cacheable regions only
- 01 = Enable predictive prefetch for cacheable regions only
- 00 = Disable predictive prefetch
- bit 3 Unimplemented: Write '0'; ignore read

bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits

- 111 = Seven Wait states
- 110 = Six Wait states
- 101 = Five Wait states
- 100 = Four Wait states
- 011 = Three Wait states
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait state

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	LMASK<10:3>									
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
		LMASK<2:0>								

REGISTER 9-4: CHEMSK: CACHE TAG MASK REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-5 LMASK<10:0>: Line Mask bits
 - 1 = Enables mask logic to force a match on the corresponding bit position in the LTAG<19:0> bits (CHETAG<23:4>) and the physical address.
 - 0 = Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B. Disables mask logic.
- bit 4-0 Unimplemented: Write '0'; ignore read

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		BitBit29/21/13/528/20/12/4		Bit 27/19/11/3	Bit Bit 27/19/11/3 26/18/10/2		Bit 24/16/8/0					
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
	CHEW0<31:24>												
00.40	R/W-x R/W-x		R/W-x R/W-x		R/W-x	R/W-x	R/W-x	R/W-x					
23.10	CHEW0<23:16>												
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
15.0	CHEW0<15:8>												
7:0	R/W-x	R/W-x	R/W-x R/W-x R/W-x		R/W-x	R/W-x	R/W-x						
				CHEWO	<7:0>								

REGISTER 9-5: CHEW0: CACHE WORD 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW0<31:0>:** Word 0 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit Bit Bit Bit 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 2		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
22:16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0
15.0			—	—	—	—	—	—
7:0	U-0 U-0 U		U-0	U-0	U-0	R-0	R-0	R-0
			_	_			FRMH<2:0>	

REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend	:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0 U-0		U-0 U-0		U-0	U-0					
31:24	—	—			—	—							
00.40	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—	—	—	—	—					
15.0	U-0	U-0	U-0	U-0	U-0 U-0		U-0	U-0					
15.0	—	—	—	—	—	—	—	—					
7.0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0					
7.0		PID<	3:0>(1)		EP<3:0>								

REGISTER 11-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾

0001 = OUT (TX) token type transaction

- 1001 = IN (RX) token type transaction
- 1101 = SETUP (TX) token type transaction

Note: All other values are reserved and must not be used.

bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

Note 1: All other values are reserved and must not be used.

PIC32MX330/350/370/430/450/470

Bit Range	Bit Bit 31/23/15/7 30/22/14/6 2		Bit Bit 29/21/13/5 28/20/12/4		Bit Bit 27/19/11/3 26/18/10/2		Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0 U-0 U-0		U-0	U-0
23.10	—	—	_	—		_	_	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	-	—	—	—
7.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device is enabled
 - 0 = Direct connection to a low-speed device is disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions is disabled
 - 0 = Retry NAKed transactions is enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive is enabled
 - 0 = Endpoint n receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit is enabled
 - 0 = Endpoint n transmit is disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX
RPB15	RPB15R	RPB15R<3:0>	10011 = REFCLKO
RPD4	RPD4R	RPD4R<3:0>	0101 = Reserved
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved
RPE3	RPE3R	RPE3R<3:0>	0111 = <u>SS1</u>
RPB7	RPB7R	RPB7R<3:0>	1000 = SDO1
RPB2	RPB2R	RPB2R<3:0>	1001 = Reserved
RPF12 ⁽⁴⁾	RPF12R	RPF12R<3:0>	1010 = Reserved
RPD12 ⁽⁴⁾	RPD12R	RPD12R<3:0>	1011 = 0C5
RPF8 ⁽⁴⁾	RPF8R	RPF8R<3:0>	1100 = Reserved 1101 = C1OUT
RPC3 ⁽⁴⁾	RPC3R	RPC3R<3:0>	1110 = Reserved
RPE9 ⁽⁴⁾	RPE9R	RPE9R<3:0>	1111 = Reserved
RPD1	RPD1R	RPD1R<3:0>	0000 = <u>No Connect</u>
RPG9	RPG9R	RPG9R<3:0>	0001 = U2RTS
RPB14	RPB14R	RPB14R<3:0>	10010 = Reserved
RPD0	RPD0R	RPD0R<3:0>	$0100 = U5TX^{(4)}$
RPD8	RPD8R	RPD8R<3:0>	0101 = Reserved
RPB6	RPB6R	RPB6R<3:0>	0110 = SS2
RPD5	RPD5R	RPD5R<3:0>	10111 = Reserved
RPF3 ⁽³⁾	RPF3R	RPF3R<3:0>	1001 = Reserved
RPF6 ⁽¹⁾	RPF6R	RPF6R<3:0>	1010 = Reserved
RPF13 ⁽⁴⁾	RPF13R	RPF13R<3:0>	1011 = OC2
RPC2 ⁽⁴⁾	RPC2R	RPC2R<3:0>	1100 = OC1 1101 = Reserved
RPE8 ⁽⁴⁾	RPE8R	RPE8R<3:0>	1110 = Reserved
RPF2 ⁽⁵⁾	RPF2R	RPF2R<3:0>	1111 = Reserved

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

2012-2016 Microchi	
o Technology	
Inc	

0

ss				Bits															
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FC14	RPE5R	31:16	—	—	—	—	—	—	-	_	_	—	—	—	_	—	—	_	0000
1014		15:0	-	—	—	—	—	—	—	_	_	—	—	—		RPE5	<3:0>		0000
FC20	RPF8R(1)	31:16	_		—	—	—	—	—	—	_	—	_	—	—	—	_	—	0000
. 010		15:0	_		_	_	-	-	_			_		—		RPE8	<3:0>		0000
FC24	RPF9R ⁽¹⁾	31:16			—	—	—	—	—		_	—	_	—	—			—	0000
	14 2014	15:0			—	—	—	—	—		_	—	_	—		RPE9	<3:0>		0000
FC40	RPF0R	31:16	_		_	_	-	-	_			_		—	_			—	0000
		15:0			—	—	—	—	—		_	—	_	—		RPF0	<3:0>		0000
FC44	RPF1R	31:16			—	—	—	—	—		_	—	_	—	—			—	0000
		15:0			_	_	—	—						—		RPF1	<3:0>		0000
FC48	RPF2R ⁽³⁾	31:16			—	—	—	—						—				—	0000
		15:0			—	—	—	—						—		RPF2	<3:0>		0000
FC4C	RPF3R(2)	31:16			—	—	—	—	—			—		—		—	—	—	0000
		15:0	_		_	_	-	-	_			_		—		RPF3	<3:0>		0000
FC50	RPF4R	31:16			—	—	—	—	—		_	—	_	—	—			—	0000
1 000		15:0	_	-	-	-	-	—	_	_	_	—	_	—		RPF4	<3:0>		0000
FC54	RPE5R	31:16	_	—	—	—	—	—		_	_	_	_	—	_	_		—	0000
1001		15:0	—	-	—	—	—	—	_	_	_	_	—	—		RPF5	<3:0>		0000
FC58	RPF6R(2)	31:16	_	—	—	—	—	—		_	_	_	_	—	_	_		—	0000
1 000		15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPF6	<3:0>		0000
EC.60	RPE8R(1)	31:16	_	—	—	—	—	—	—	_	_	—	_	—	—	—	—	—	0000
1000		15:0	_	—	—	—	—	—		_	_	_	_	—		RPF8	<3:0>		0000
FC70	RPF12R(1)	31:16	_	—	—	—	—	—		_	_	_	_	—	_	_		—	0000
1010	1011210	15:0	—	-	—	—	—	—	_	_	_	_	—	—		RPF12	2<3:0>		0000
FC74	RPF13R(1)	31:16	—	—	—	—	—	—	_	_	—	—	—	—	_	—	_	—	0000
10/1		15:0	_	—	—	—	—	—		_	_	_	_	—		RPF13	3<3:0>		0000
FC80		31:16	_	—	—	—	—	—		_	_		_	_	_			_	0000
1000		15:0	_	—	—	—	—	—		_	_	_	_	—		RPG0	<3:0>		0000
FC.84	RPG1R(1)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
1004		15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPG1	<3:0>		0000
FC08	PPG6P	31:16	_	—	_	_	_	_		—					_			_	0000
1090	NEGOR	15:0	_	—	—	—	—	—	—	_	_	—	_	—		RPG6	6<3:0>		0000
ECOC	PPC7P	31:16	—	-	—	—	—	—	—	—	_	—	—	—	—	—	_	-	0000
FUBU	KFG/K	15:0	—	_	_	_	_	_		_	_	—	_	_		RPG7	<3:0>		0000
Legend	d: x = un	known v	alue on Re	eset: — = u	nimplement	ted, read as	s '0'. Reset	values are	shown in h	exadecimal									

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

3: This register is not available on 64-pin devices with a USB module.

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in the PIC32MX330/350/370/430/450/470 family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 30 Mbps at 120 MHz
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- · Loopback mode for diagnostic support
- · LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 20-1 illustrates a simplified block diagram of the UART.

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

27.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features
	of the PIC32MX330/350/370/430/450/470
	family of devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 10. "Power-
	Saving Features" (DS60001130), which
	is available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

This section describes power-saving features for the PIC32MX330/350/370/430/450/470 family of devices. These PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

27.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

27.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock

running.

• Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

27.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

27.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is Halted.
- The system clock source is typically shutdown. See Section 27.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

27.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a $\tt WAIT$ instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

27.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Parameter Typical ⁽³⁾ Maximum			Units	Conditions				
Operating (Current (IDD)	(1,2)						
DC20	2.5	4	mA	4 MHz				
DC21	6	9	mA	10 MHz (Note 4)				
DC22	11	17	mA	mA 20 MHz (Note 4)				
DC23	21	32	mA	40 MHz (Note 4)				
DC24	30	45	mA	60 MHz (Note 4)				
DC25	40	60	mA	80 MHz				
DC25a	50	75	mA	100 MHz, $-40^{\circ}C \le TA \le +85^{\circ}C$				
DC25c	72	84	mA	120 MHz, 0°C ≤ TA ≤ +70°C				
DC26	100		μA	+25°C, 3.3V LPRC (31 kHz) (Note 4)				

TABLE 31-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - · OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating (ON bit = 0), but the associated PMD bit is clear
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - · All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Parameter No.	Typical ⁽²⁾	Maximum	Units Conditions					
Idle Current (II	DLE): Core Of	f, Clock on E	Base Curre	nt (Note 1)				
DC30a	1	2.2	mA	mA 4 MHz				
DC31a	3	5	mA 10 MHz (Note 3)					
DC32a	5	7	mA 20 MHz (Note 3)					
DC33a	8	13	mA 40 MHz (Note 3)					
DC34a	11	18	mA	60 MHz (Note 3)				
DC34b	15	24	mA	80 MHz				
DC34c	19	29	mA	100 MHz, -40°C \leq TA \leq +85°C				
DC34d	25	34	mA	120 MHz, 0°C ≤ TA ≤ +70°C				
DC37a	100	—	μA	-40°C		LPRC (31 kHz) (Note 3)		
DC37b	250	—	μA	+25°C	3.3V			
DC37c	380	_	μA	+85°C				

TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core is halted), program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.

		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)						
DC CHARACTERISTICS			Öperatin	g tempe	erature	$0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial -40°C $\le TA \le +85^{\circ}C$ for Industrial -40°C $\le TA \le +105^{\circ}C$ for V-temp		
Param.	Symbol	Characteristic	Min. Typ. Max.			Units	Conditions	
DO10 Vo	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	v	IOL \leq 9 mA, VDD = 3.3V	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RC15, RD2, RD10, RF6, RG6	_	_	0.4	V	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
DO20 V	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	v	Ioh ≥ -10 mA, Vdd = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	2.4	_	_	V	Іон ≥ -15 mA, Vdd = 3.3V	
	Vон1	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	1.5 ⁽¹⁾		—	V	IOH \geq -14 mA, VDD = 3.3V	
DO20A			2.0 ⁽¹⁾	—	_		IOH \ge -12 mA, VDD = 3.3V	
			3.0 ⁽¹⁾	—	—		IOH \ge -7 mA, VDD = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	1.5 ⁽¹⁾	_	_	V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
			2.0 ⁽¹⁾	_	_		$\text{IOH} \geq \text{-18 mA, VDD} = 3.3\text{V}$	
			3.0 ⁽¹⁾				Ioh \geq -10 mA, Vdd = 3.3V	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Гурісаl ⁽¹⁾ Мах. L		Conditions	
Clock P	arameter	S						
AD50	TAD	ADC Clock Period ⁽²⁾	65	—	_	ns	See Table 31-36	
Conver	Conversion Rate							
AD55	ΤΟΟΝΛ	Conversion Time	—	12 Tad	_		—	
AD56 FCNV	Throughput Rate		—	1000	ksps	AVDD = 3.0V to 3.6V		
		(Sampling Speed) ⁽⁴⁾		—	400	ksps	AVDD = 2.5V to 3.6V	
AD57	TSAMP	Sample Time	2 TAD	—	—	_	—	
Timing	Timing Parameters							
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	_	1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad		1.5 TAD	_	—	
AD62	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	_	0.5 TAD	_		_	
AD63	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	—	—	2	μS	—	

TABLE 31-37: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: Refer to Table 31-36 for detailed conditions.

PIC32MX330/350/370/430/450/470

PIC32MX330/350/370/430/450/470

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B