

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx370f512l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

10	100-PIN TQFP (TOP VIEW) ^(1,2,3)								
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L								
			100 1						
Pin #	Full Pin Name	Pin #	Full Pin Name						
71	RPD11/PMCS1/RD11	86	Vdd						
72	RPD0/RD0	87	RPF0/PMD11/RF0						
73	SOSCI/RPC13/RC13								
		88	RPF1/PMD10/RF1						
74	SOSCO/RPC14/T1CK/RC14	88	RPF1/PMD10/RF1 RPG1/PMD9/RG1						
74 75									
	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1						
75	SOSCO/RPC14/T1CK/RC14 Vss	89 90	RPG1/PMD9/RG1 RPG0/PMD8/RG0						
75 76	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1	89 90 91	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6						
75 76 77	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2	89 90 91 92	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7						
75 76 77 78	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3	89 90 91 92 93	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0						
75 76 77 78 79	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4	89 90 91 92 93 94	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12						
75 76 77 78 79 80	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13	89 90 91 92 93 94 95	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14						
75 76 77 78 79 80 81	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4	89 90 91 92 93 94 95 96	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12 TRD0/RG13 AN20/PMD2/RE2						
75 76 77 78 79 80 81 82	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5	89 90 91 92 93 94 95 96 97	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12 TRD0/RG13						

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

		Pin Numb	er				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description	
AN0	16	25	B14		Analog		
AN1	15	24	A15	I	Analog		
AN2	14	23	B13	I	Analog		
AN3	13	22	A13	I	Analog		
AN4	12	21	B11	I	Analog		
AN5	11	20	A12	I	Analog		
AN6	17	26	A20	I	Analog		
AN7	18	27	B16	I	Analog		
AN8	21	32	A23	I	Analog		
AN9	22	33	B19	I	Analog		
AN10	23	34	A24	I	Analog		
AN11	24	35	B20	I	Analog		
AN12	27	41	B23	I	Analog		
AN13	28	42	A28	I	Analog	Analog input channels.	
AN14	29	43	B24	I	Analog		
AN15	30	44	A29	I	Analog		
AN16	4	10	A7	I	Analog		
AN17	5	11	B6	I	Analog		
AN18	6	12	A8	I	Analog		
AN19	8	14	A9	I	Analog		
AN20	62	98	A66	I	Analog		
AN21	64	100	A67	I	Analog		
AN22	1	3	B2	I	Analog		
AN23	2	4	A4	I	Analog		
AN24	49	76	A52	I	Analog		
AN25	50	77	B42	I	Analog		
AN26	51	78	A53	I	Analog		
AN27	3	5	B3	I	Analog		
CLKI	39	63	B34	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.	
CLKO	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.	
OSC1	39	63	B34	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.	
OSC2	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.	
SOSCI	47	73	A47	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.	
SOSCO	48	74	B40	0	—	32.768 kHz low-power oscillator crystal output.	
-	ST = Schm		tible input or o out with CMOS			alog = Analog input P = Power = Output I = Input	

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e[®], is also available by accessing the CP0 registers, listed in Table 3-2.

Reserved HWREna BadVAddr ⁽¹⁾ Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reserved in the PIC32MX330/350/370/430/450/470 family core. Enables access via the RDHWR instruction to selected hardware registers. Reports the address for the most recent address-related exception. Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core. Timer interrupt control.
BadVAddr ⁽¹⁾ Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reports the address for the most recent address-related exception. Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core.
Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core.
Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reserved in the PIC32MX330/350/370/430/450/470 family core.
Compare ⁽¹⁾ Status ⁽¹⁾	
Status ⁽¹⁾	Timer interrupt control.
(4)	Processor status and control.
IntCtl ⁽¹⁾	Interrupt system status and control.
SRSCtl ⁽¹⁾	Shadow register set status and control.
SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
Cause ⁽¹⁾	Cause of last general exception.
EPC ⁽¹⁾	Program counter at last exception.
PRId	Processor identification and revision.
EBASE	Exception vector base register.
Config	Configuration register.
Config1	Configuration register 1.
Config2	Configuration register 2.
Config3	Configuration register 3.
Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
Debug ⁽²⁾	Debug control and exception status.
DEPC ⁽²⁾	Program counter at last debug exception.
Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
ErrorEPC ⁽¹⁾	Program counter at last error.
DESAVE ⁽²⁾	Debug handler scratchpad register.
	RSMap ⁽¹⁾ Cause ⁽¹⁾ PC ⁽¹⁾ PRId BASE Config Config1 Config2 Config3 Reserved Debug ⁽²⁾ DEPC ⁽²⁾ Reserved ErrorEPC ⁽¹⁾

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24					_		-	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	-	-	-	_	—	_	_
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				<10:3>				
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7:0		_MASK<2:0>		_	_	_	_	—

REGISTER 9-4: CHEMSK: CACHE TAG MASK REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-5 LMASK<10:0>: Line Mask bits
 - 1 = Enables mask logic to force a match on the corresponding bit position in the LTAG<19:0> bits (CHETAG<23:4>) and the physical address.
 - 0 = Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B. Disables mask logic.
- bit 4-0 Unimplemented: Write '0'; ignore read

			••••	•						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24	CHEW0<31:24>									
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16	CHEW0<23:16>									
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8	CHEW0<15:8>									
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7:0			•	CHEWO)<7:0>					

REGISTER 9-5: CHEW0: CACHE WORD 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **CHEW0<31:0>:** Word 0 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

PIC32MX330/350/370/430/450/470

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC	<1:0>	WBO ⁽¹⁾	_	_	BITO ⁽¹⁾
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	_	_	-
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	_	_			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP		_	(CRCCH<2:0>	

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit⁽¹⁾

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial - 1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	K/W-U	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0								
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	CHSSA<23:16>									
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	CHSSA<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				CHSSA	<7:0>					

REGISTER 10-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 10-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	CHDSA<31:24>														
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:10	CHDSA<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	CHDSA<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				CHDSA	<7:0>										

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\textbf{Note:}}$ This must be the physical address of the destination.

PIC32MX330/350/370/430/450/470

REGISTER 11-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—				_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—				_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—				_	_	_
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP	T<3:0>		DIR	PPBI		_

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 **PPBI:** Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX
RPB15	RPB15R	RPB15R<3:0>	0011 = REFCLKO 0100 = U5TX ⁽⁴⁾
RPD4	RPD4R	RPD4R<3:0>	0100 = 001 x 0
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved
RPE3	RPE3R	RPE3R<3:0>	0111 = <u>SS1</u>
RPB7	RPB7R	RPB7R<3:0>	1000 = SDO1
RPB2	RPB2R	RPB2R<3:0>	1001 = Reserved
RPF12 ⁽⁴⁾	RPF12R	RPF12R<3:0>	1010 = Reserved
RPD12 ⁽⁴⁾	RPD12R	RPD12R<3:0>	
RPF8 ⁽⁴⁾	RPF8R	RPF8R<3:0>	1100 - Reserved
RPC3 ⁽⁴⁾	RPC3R	RPC3R<3:0>	1110 = Reserved
RPE9 ⁽⁴⁾	RPE9R	RPE9R<3:0>	1111 = Reserved
RPD1	RPD1R	RPD1R<3:0>	0000 = No Connect
RPG9	RPG9R	RPG9R<3:0>	0001 = U2RTS
RPB14	RPB14R	RPB14R<3:0>	0010 = Reserved 0011 = U1RTS
RPD0	RPD0R	RPD0R<3:0>	$0100 = U5TX^{(4)}$
RPD8	RPD8R	RPD8R<3:0>	0101 = Reserved
RPB6	RPB6R	RPB6R<3:0>	0110 = <u>SS2</u>
RPD5	RPD5R	RPD5R<3:0>	0111 = Reserved 1000 = SDO1
RPF3 ⁽³⁾	RPF3R	RPF3R<3:0>	1000 = SDOT
RPF6 ⁽¹⁾	RPF6R	RPF6R<3:0>	1010 = Reserved
RPF13 ⁽⁴⁾	RPF13R	RPF13R<3:0>	1011 = OC2
RPC2 ⁽⁴⁾	RPC2R	RPC2R<3:0>	1100 = OC1 1101 = Reserved
RPE8 ⁽⁴⁾	RPE8R	RPE8R<3:0>	1110 = Reserved
RPF2 ⁽⁵⁾	RPF2R	RPF2R<3:0>	1111 = Reserved

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

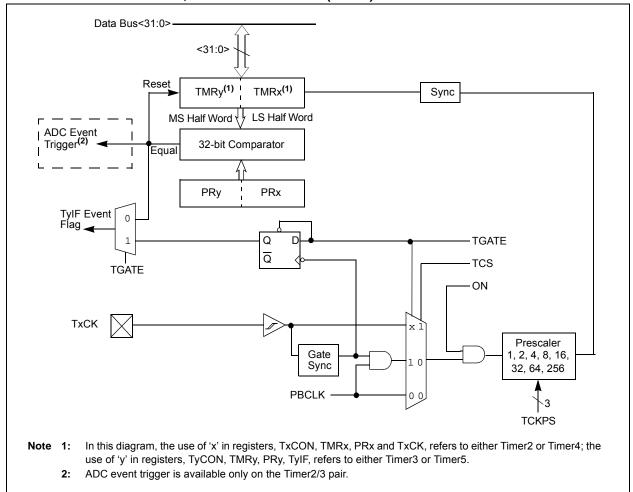

		<u> </u>	IC32MX	430F064	4L, PIC3	2MX450	F128L	, PIC32	MX450F	256L, A	ND PIC3	32MX470	F512L	DEVIC	ES ONL	Y			
ess										Bit	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	—	—	—	—	_	_			_			—		_	—	—	0000
0000	ANOLLO	15:0	—	—	—	—	—	_	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	—		_	—	—	01C0
6610	TRISG	31:16	—	—	—	—	—	—	—	—	—	—	—	—		—	—	—	0000
00.0		15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	—	TRISG9	TRISG8	TRISG7	TRISG6	—	—	TRISG3	TRISG2	TRISG1	TRISG0	xxxx
6620	PORTG	31:16	_			—	_	_	—	_	—	—	_	—	—	—	—	—	0000
0020		15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	—	—	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6630	LATG	31:16	_			-	_	—	—	—	—	—	—	—	-	—	—	—	0000
		15:0	LATG15	LATG14	LATG13	LATG12	_	—	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16	—	_	_	—	—	_	—	—	—	—	—	—		-	—	—	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12	—	_	ODCG9	ODCG8	ODCG7	ODCG6	—	—	ODCG3	ODCG2	ODCG1	ODCG0	xxxx
6650	CNPUG	31:16	—	_	_	—	—	_	—	—	—	—	—	—		-	—	—	0000
			CNPUG15	CNPUG14	CNPUG13	CNPUG12	—	—	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	—	CNPUG3	CNPUG2	CNPUG1	CNPUG0	
6660	CNPDG	31:16	—	—	—	—	—	—	—		—	—	_	—	—	—	—	—	0000
			CNPDG15	CNPDG14	CNPDG13	CNPDG12	—	—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	—	CNPDG3	CNPDG2	CNPDG1	CNPDG0	
6670	CNCONG	31:16	-	_	-	-	_	_	_	_	_	_	_	-		_	_	-	0000
		15:0	ON	_	SIDL	-	_	_	_	_	_	_	_	-		_	_	-	0000
6680	CNENG	31:16	-	-	-	-	_	_	-	-	-	-	_	_	-	-	-	-	0000
		15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	xxxx
0000		31:16	-	-	-	-	_	—	—	_	—	—	_	—	—	—	—	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	—	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	—	—	CN STATG3	CN STATG2	CN STATG1	CN STATG0	xxxx

TABLE 12-15: PORTG REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit only implemented on devices without a USB module.

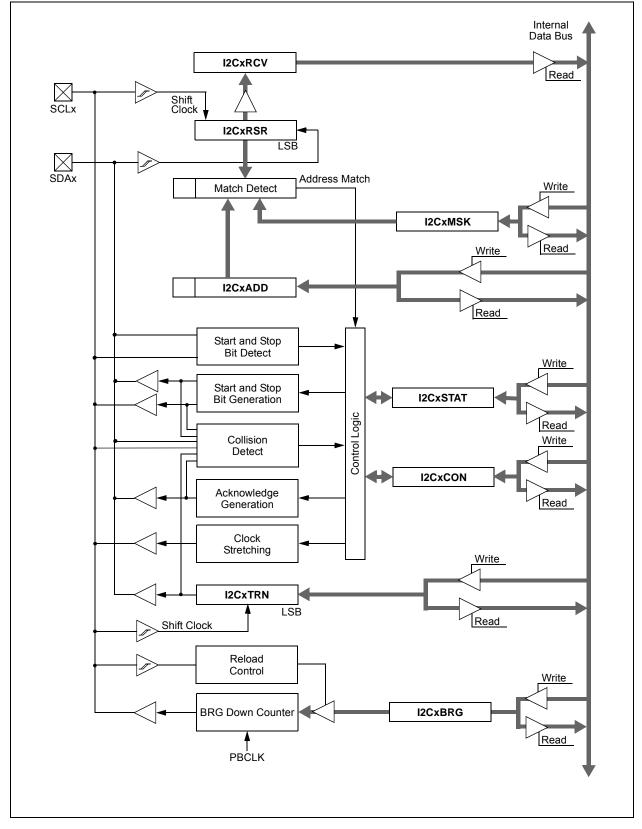
FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)⁽¹⁾

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	MCLKSEL ⁽²⁾	—		_	—	_	SPIFE	ENHBUF ⁽²⁾
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾ —		SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SSEN	CKP ⁽⁴⁾	MSTEN	DISSDI	STXISE	L<1:0>	SRXIS	EL<1:0>

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER

Legend:


R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31 FRMEN: Framed SPI Support bit

- 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on <u>SSx</u> pin bit (Framed SPI mode only)
 - 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 **FRMPOL:** Frame Sync Polarity bit (Framed SPI mode only)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 **MSSEN:** Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in FRAMED_SYNC mode.
 - 111 = Reserved; do not use
 - 110 = Reserved; do not use
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23 MCLKSEL: Master Clock Enable bit⁽²⁾
 - 1 = REFCLK is used by the Baud Rate Generator
 - 0 = PBCLK is used by the Baud Rate Generator
- bit 22-18 Unimplemented: Read as '0'
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

PIC32MX330/350/370/430/450/470

FIGURE 19-1: I²C BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

REGISTER 19-1: I2CxCON: I²C CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	_	—	—	—	_	_					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	_	_	_	_	_	_					
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	0N ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN					
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC					
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN					

Legend:	HC = Cleared in Hardwar	е				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** I²C Enable bit⁽¹⁾
 - 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
 - 0 = Disables the I^2 C module; all I^2 C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock

bit 12

- 0 = Hold SCLx clock low (clock stretch)
- If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule is not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 **DISSLW:** Disable Slew Rate Control bit
 - 1 = Slew rate control is disabled
 - 0 = Slew rate control is enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

ess		0								В	its								ŝ
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	31:16 15:0		ADC Result Word A (ADC1BUFA<31:0>)											0000				
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>)												0000			
9130	ADC1BUFC	31:16 15:0		ADC Result Word C (ADC1BUFC<31:0>)											0000				
9140	ADC1BUFD	31:16 15:0							ADC Res	ult Word D	(ADC1BUF	D<31:0>)							0000
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>)											0000				
9160	ADC1BUFF	31:16 15:0		ADC Result Word F (ADC1BUFF<31:0>)											0000				

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details.

26.1 Control Register

TABLE 26-1: CTMU REGISTER MAP

ess		0								Bits									ŝ
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1 200	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2MOD EDG2POL EDG2SEL<3:0>					—	_	0000
A200	CTWOCON	15:0	ON - CTMUSIDL TGEN EDGEN EDGSEQEN					IDISSEN	SSEN CTTRIG ITRIM<5:0>					IRNG	<1:0>	0000			

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	EDG1MOD	EDG1POL		EDG1S	EDG2STAT	EDG1STAT		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
	EDG2MOD	EDG2POL		EDG2S	_	—		
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ITRIM<5:0>						IRNG<1:0>	

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

1111 = Reserved

1110 = C2OUT pin is selected

- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source

- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

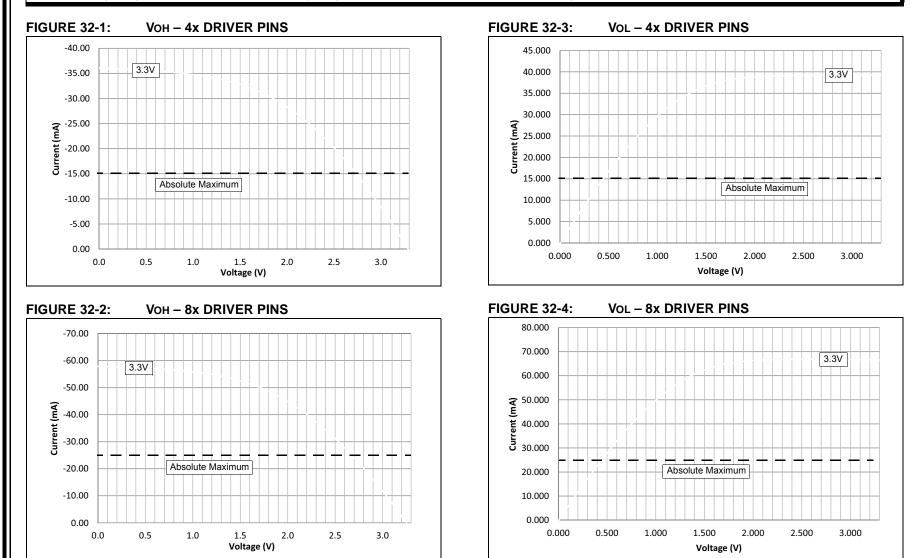
27.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- · Configuration bit select lock

27.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.


To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "Oscillator" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

27.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

