

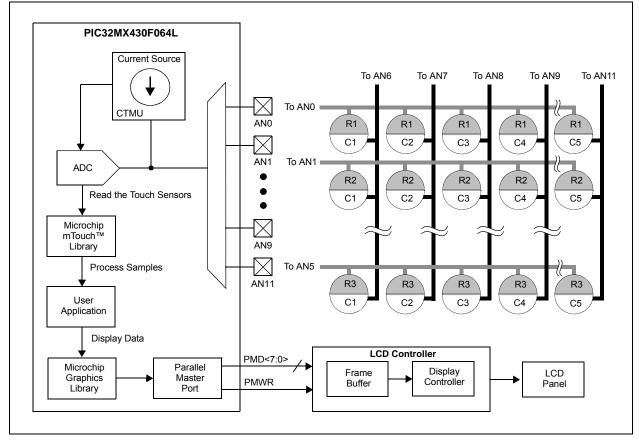
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

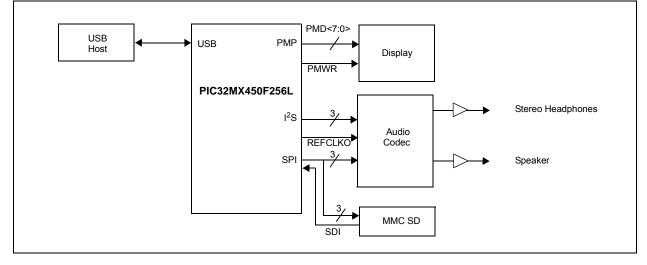
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx370f512lt-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


2.11 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-6, Figure 2-7, and Figure 2-8.

FIGURE 2-6: CAPACITIVE TOUCH SENSING WITH GRAPHICS APPLICATION

FIGURE 2-7: AUDIO PLAYBACK APPLICATION

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX330/350/370/430/450/470 family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Memory" (DS60001121), Program which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

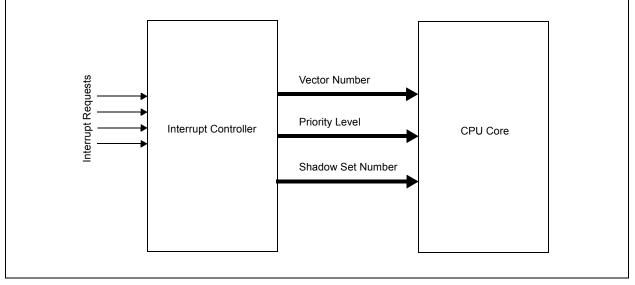
EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX330/350/370/430/450/470 devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

7.0 INTERRUPT CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX330/350/370/430/450/470 interrupt module includes the following features:

- Up to 76 interrupt sources
- · Up to 46 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Dedicated shadow set configurable for any priority level (see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in 28.0 "Special Features" for more information)
- Software can generate any interrupt
- User-configurable interrupt vector table location
- User-configurable interrupt vector spacing

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	_	_		_	—
00.40	U-0	U-0	U-0 U-0		U-0	U-0	U-0	R/W-0
23:16	—	—	—	_	—	—	_	CHECOH
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	-	—		DCSZ	2<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1 R/W-1		R/W-1
7:0	_	—	PREFE	N<1:0>	_	PFMWS<2:0>		>

REGISTER 9-1: CHECON: CACHE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Write '0'; ignore read

- bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
 - 1 = Invalidate all data and instruction lines
 - 0 = Invalidate all data lnes and instruction lines that are not locked
- bit 15-10 Unimplemented: Write '0'; ignore read
- bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
 - 11 = Enable data caching with a size of 4 Lines
 - 10 = Enable data caching with a size of 2 Lines
 - 01 = Enable data caching with a size of 1 Line
 - 00 = Disable data caching

Changing these bits induce all lines to be reinitialized to the "invalid" state.

bit 7-6 **Unimplemented:** Write '0'; ignore read

bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits

- 11 = Enable predictive prefetch for both cacheable and non-cacheable regions
- 10 = Enable predictive prefetch for non-cacheable regions only
- 01 = Enable predictive prefetch for cacheable regions only
- 00 = Disable predictive prefetch
- bit 3 Unimplemented: Write '0'; ignore read

bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits

- 111 = Seven Wait states
- 110 = Six Wait states
- 101 = Five Wait states
- 100 = Four Wait states
- 011 = Three Wait states
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait state

'1' = Bit is set

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
31:24	CHEPFABT<31:24>													
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
23:16	CHEPFABT<23:16>													
15:8	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
	CHEPFABT<15:8>													
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
7:0	CHEPFABT<7:0>													
Legend	1													
R = Rea	dable bit		W = Writable	e bit	U = Unimple	emented bit, re	ad as '0'							

REGISTER 9-12: CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER

bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits

-n = Value at POR

Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store.

'0' = Bit is cleared

x = Bit is unknown

PIC32MX330/350/370/430/450/470

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Bit Range	Bit Bit 31/23/15/7 30/22/14/6				Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC	<1:0>	WBO ⁽¹⁾	_	_	BITO ⁽¹⁾
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	_	_	_	_	-
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	_	_			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP		_	(

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit⁽¹⁾

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial - 1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB OTG support
- · Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

PIC32MX330/350/370/430/450/470

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

		•						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31:24	-	—	—	-	—	—	-	—
23:16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—	—	-	—	—	-	—
15:8	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0
15.0	_	_	—	_	—	_	25/17/9/1 24/1 U-0 U U-0 U U-0 U U-0 U W-0 U R/W-0 R/M LIEBRIE(1) URS	—
	R/W-0	R/W-0						
7:0	STALLIE	ATTACHIE	RESUMEIE		TRNIE	SOFIE	церріе(1)	URSTIE ⁽²⁾
	STALLIE	ALIACHIE	RESUMEIE	IDLEIE		SOFIE	UERRIE' /	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL Handshake Interrupt Enable bit 1 = STALL interrupt is enabled 0 = STALL interrupt is disabled
bit 6	ATTACHIE: ATTACH Interrupt Enable bit 1 = ATTACH interrupt is enabled 0 = ATTACH interrupt is disabled
bit 5	RESUMEIE: RESUME Interrupt Enable bit 1 = RESUME interrupt is enabled 0 = RESUME interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit 1 = Idle interrupt is enabled 0 = Idle interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt Enable bit 1 = TRNIF interrupt is enabled 0 = TRNIF interrupt is disabled
bit 2	SOFIE: SOF Token Interrupt Enable bit 1 = SOFIF interrupt is enabled 0 = SOFIF interrupt is disabled
bit 1	UERRIE: USB Error Interrupt Enable bit ⁽¹⁾ 1 = USB Error interrupt is enabled

- 1 = USB Error interrupt is enabled 0 = USB Error interrupt is disabled
- bit 0 URSTIE: USB Reset Interrupt Enable bit⁽²⁾
 - 1 = URSTIF interrupt is enabled
 - 0 = URSTIF interrupt is disabled
 - DETACHIE: USB Detach Interrupt Enable bit⁽³⁾
 - 1 = DATTCHIF interrupt is enabled
 - 0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Periphera Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS 0011 = Reserved
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved 1000 = Reserved
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5	RPB5R	RPB5R<3:0>	1010 = Reserved
RPC1 ⁽⁴⁾	RPC1R	RPC1R<3:0>	1011 = OC3
RPD14 ⁽⁴⁾	RPD14R	RPD14R<3:0>	1100 = Reserved 1101 = C2OUT
RPG1 ⁽⁴⁾	RPG1R	RPG1R<3:0>	1110 = Reserved
RPA14 ⁽⁴⁾	RPA14R	RPA14R<3:0>	1111 = Reserved
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved
RPD11	RPD11R	RPD11R<3:0>	
RPF0	RPF0R	RPF0R<3:0>	0100 = 05RTS(*)
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved
RPF3 ⁽²⁾	RPF3R	RPF3R<3:0>	1010 = Reserved
RPC4 ⁽⁴⁾	RPC4R	RPC4R<3:0>	1011 = OC4 1100 = Reserved
RPD15 ⁽⁴⁾	RPD15R	RPD15R<3:0>	1100 - Reserved
RPG0 ⁽⁴⁾	RPG0R	RPG0R<3:0>	1110 = Reserved
RPA15 ⁽⁴⁾	RPA15R	RPA15R<3:0>	1111 = Reserved

TABLE 12-2: OUTPUT PIN SELECTION

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

	ONLY																		
ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16	_	_	_		_		_				_		-		_		0000
0310	TRIST	15:0	_	—	TRISF13	TRISF12	—	_	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	xxxx
6520	PORTF	31:16	—	—	—	—	_	-	—	-	-	-	—	_	_	-	_	-	0000
0520	TOKI	15:0	—	—	RF13	RF12	_	-	—	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATF	31:16	—	—	—	—	_	-	—	-	-	-	—	_	_	-	_	-	0000
0000	LAII	15:0	—	—	LATF13	LATF12	_	-	—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCF	31:16	_		—	—	—	_		_	_		—	_	_	_			0000
0040	0001	15:0	_		ODCF13	ODCF12	—	_		ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	xxxx
6550	CNPUF	31:16	—		—	—	—	—		—	—	—	—	—	—	—	—	_	0000
0000		15:0	—	—	CNPUF13	CNPUF12	—	—	—	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	xxxx
6560	CNPDF	31:16	—	—	—	—	—	_	—	—	_	_	—	_	—	_	—	—	0000
		15:0	—	—	CNPDF13	CNPDF12	—	-	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	xxxx
6570	CNCONF	31:16	—	—	—	—	—	-	—	-	-	_	—	_	—	-	—	—	0000
		15:0	ON	—	SIDL	—	—	-	—	-	-	_	—	_	—	-	—	—	0000
6580	CNENF	31:16	—	—	—	—	—	-	—	-	-	_	—	_	—	-	—	—	0000
		15:0	—	—	CNIEF13	CNIEF12	—	-	—	CNIEF8	CNIEF7	_	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	xxxx
		31:16	—	—	—	—	—	-	—	-	-	_	—	_	-	-	—	—	0000
6590	CNSTATF	15:0	_	—	CN STATF13	CN STATF12	_	_	—	CN STATF8	CN STATF7	_	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	xxxx

TABLE 12-11: PORTF REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, AND PIC32MX370F512L DEVICES

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

13.0 TIMER1

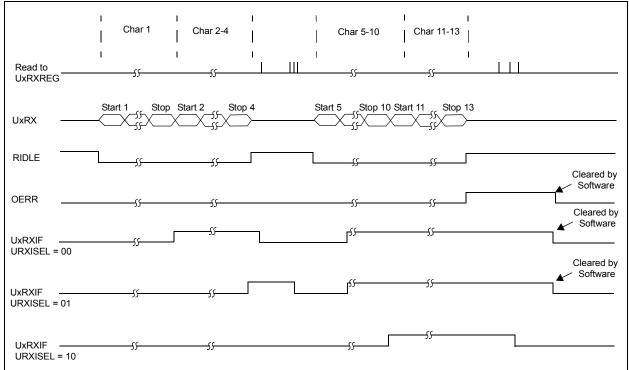

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a freerunning interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

13.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)



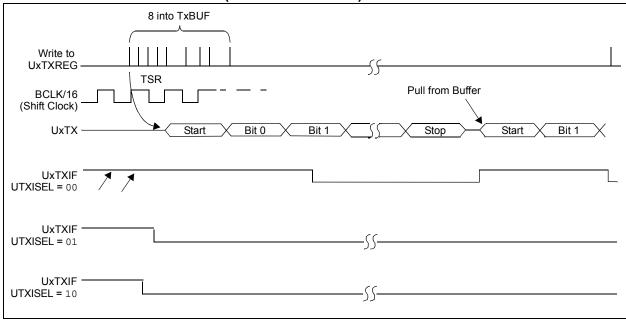
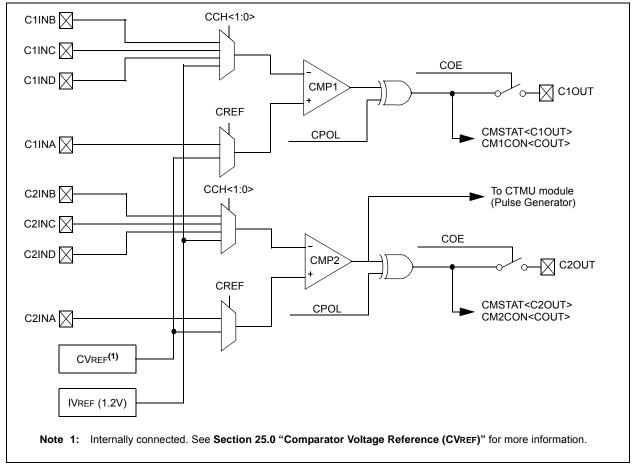

20.2 Timing Diagrams

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

24.0 COMPARATOR


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section 19. to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains two comparators that can be configured in a variety of ways.

The following are key features of this module:

- · Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 24-1.

FIGURE 24-1: COMPARATOR BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	-	-	—	_	—	_		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		_	_	_	—		_	-		
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	ON ⁽¹⁾	_	_	_	—	_	_	_		
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	CVROE	CVRR	CVRSS	CVR<3:0>					

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

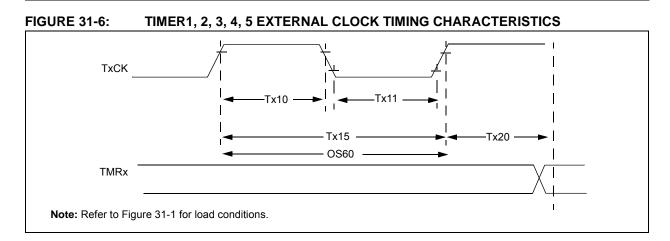
Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Voltage Reference On bit⁽¹⁾
 - 1 = Module is enabled

Setting this bit does not affect other bits in the register.


- 0 = Module is disabled and does not consume current
 - Clearing this bit does not affect the other bits in the register.
- bit 14-7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit
 - 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin
- bit 5 CVRR: CVREF Range Selection bit
 - 1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size
 - 0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
- bit 4 **CVRSS:** CVREF Source Selection bit
 - 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)
 - 0 = Comparator voltage reference source, CVRSRC = AVDD AVSS

bit 3-0 **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits

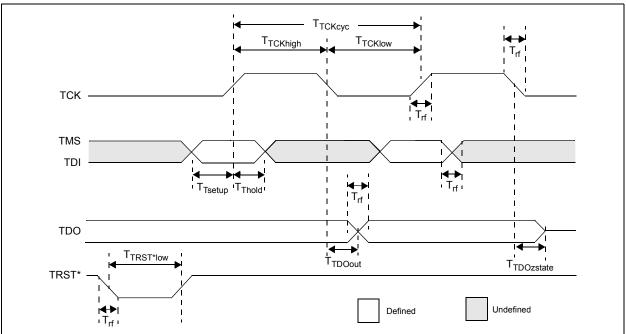
 $\frac{\text{When CVRR = 1:}}{\text{CVREF = (CVR<3:0>/24) \bullet (CVRSRC)}}$ $\frac{\text{When CVRR = 0:}}{\text{CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)}}$

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

TABLE 31-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics ⁽²⁾			Min.	Typical	Max.	Units	Conditions	
-		TxCK High Time	Synchronous, with prescaler		[(12.5 ns or 1 Трв)/N] + 25 ns	—	—	ns	Must also meet parameter TA15	
			Asynchronous, with prescaler		10	—	—	ns	_	
TA11 TTXL		TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	_	ns	Must also meet parameter TA15	
			Asynchronous, with prescaler		10	_	_	ns	—	
TA15	ΤτχΡ	TxCK Input Period	Synchronous, with prescaler		[(Greater of 25 ns or 2 Трв)/N] + 30 ns	—	_	ns	VDD > 2.7V	
					[(Greater of 25 ns or 2 TPB)/N] + 50 ns	—	_	ns	VDD < 2.7V	
			Asynchronous with prescaler		20	—	_	ns	VDD > 2.7V (Note 3)	
					50 –		_	ns	VDD < 2.7V (Note 3)	
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by set TCS bit (T1CON<1>))			32	_	100	kHz	_	
TA20	TCKEXTMRL	Delay from External TxC Clock Edge to Timer Increment		CK	_		1	Трв	—	


Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

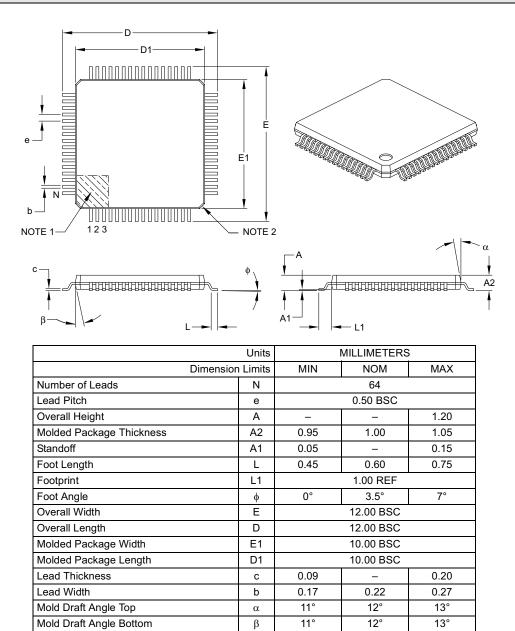
PIC32MX330/350/370/430/450/470

FIGURE 31-23: EJTAG TIMING CHARACTERISTICS

TABLE 31-43: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions
EJ1	Ттсксүс	TCK Cycle Time	25	—	ns	—
EJ2	Ттскнідн	TCK High Time	10	—	ns	—
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	_	ns	—
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK		5	ns	—
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK		5	ns	_
EJ8	TTRSTLOW	TRST Low Time	25	—	ns	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output			ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.


NOTES:

33.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B