

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx370f512lt-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e[®], is also available by accessing the CP0 registers, listed in Table 3-2.

Reserved HWREna BadVAddr ⁽¹⁾ Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reserved in the PIC32MX330/350/370/430/450/470 family core. Enables access via the RDHWR instruction to selected hardware registers. Reports the address for the most recent address-related exception. Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core. Timer interrupt control.
BadVAddr ⁽¹⁾ Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reports the address for the most recent address-related exception. Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core.
Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core.
Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reserved in the PIC32MX330/350/370/430/450/470 family core.
Compare ⁽¹⁾ Status ⁽¹⁾	
Status ⁽¹⁾	Timer interrupt control.
(4)	Processor status and control.
IntCtl ⁽¹⁾	Interrupt system status and control.
SRSCtl ⁽¹⁾	Shadow register set status and control.
SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
Cause ⁽¹⁾	Cause of last general exception.
EPC ⁽¹⁾	Program counter at last exception.
PRId	Processor identification and revision.
EBASE	Exception vector base register.
Config	Configuration register.
Config1	Configuration register 1.
Config2	Configuration register 2.
Config3	Configuration register 3.
Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
Debug ⁽²⁾	Debug control and exception status.
DEPC ⁽²⁾	Program counter at last debug exception.
Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
ErrorEPC ⁽¹⁾	Program counter at last error.
DESAVE ⁽²⁾	Debug handler scratchpad register.
	RSMap ⁽¹⁾ Cause ⁽¹⁾ PC ⁽¹⁾ PRId BASE Config Config1 Config2 Config3 Reserved Debug ⁽²⁾ DEPC ⁽²⁾ Reserved ErrorEPC ⁽¹⁾

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

4.2 Bus Matrix Registers

TABLE 4-2: BUS MATRIX REGISTER MAP

		-																	
ress	2	e										Bits							
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	BMXCON ⁽¹⁾	31:16	—					BMXCHEDMA			—	—		BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000	BIVIACON	15:0	_	BMXWSDRM BMXARB<2:0> 00								0047							
2010	BMXDKPBA ⁽¹⁾	31:16	_	_	-	-		—	_		_	_	_	—	-	_	—	—	0000
2010	DIVIADIAL DA	15:0		BMXDKPBA<15:0> 0000															
2020	BMXDUDBA ⁽¹⁾	31:16	—	_	—	—	—	—	—	—	—	_	_	—	—	_	_	—	0000
2020		15:0	BMXDUDBA<15:0> 0000									0000							
2030	BMXDUPBA ⁽¹⁾	31:16	_	_	—	—	_	—	_	—	_	_	_	—	—	—		—	0000
2000	5	15:0									BM	XDUPBA<15:0>	•						0000
2040	BMXDRMSZ	31:16									BM	XDRMSZ<31:0>							xxxx
		15:0		1															xxxx
2050	BMXPUPBA ⁽¹⁾	31:16	—	_	—	—	—	-	—	—	—	—	—	—		BMXPUPBA	<19:16>		0000
		15:0									BM	XPUPBA<15:0>							0000
2060	BMXPFMSZ	31:16									BM	XPFMSZ<31:0>							XXXX
		15:0																	XXXX
2070	BMXBOOTSZ	31:16									BMX	(BOOTSZ<31:0)	>						0000
		15:0																	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Interrupt Source ⁽¹⁾	IRQ #	Vector			Persistent		
Interrupt Source."	IKQ #	#	Flag	Enable	Priority	Sub-priority	Interrupt
CNB – PORTB Input Change Interrupt	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>	Yes
CNC – PORTC Input Change Interrupt	46	33	IFS1<14>	IEC1<14>	IPC8<12:10>	IPC8<9:8>	Yes
CND – PORTD Input Change Interrupt	47	33	IFS1<15>	IEC1<15>	IPC8<12:10>	IPC8<9:8>	Yes
CNE – PORTE Input Change Interrupt	48	33	IFS1<16>	IEC1<16>	IPC8<12:10>	IPC8<9:8>	Yes
CNF – PORTF Input Change Interrupt	49	33	IFS1<17>	IEC1<17>	IPC8<12:10>	IPC8<9:8>	Yes
CNG – PORTG Input Change Interrupt	50	33	IFS1<18>	IEC1<18>	IPC8<12:10>	IPC8<9:8>	Yes
PMP – Parallel Master Port	51	34	IFS1<19>	IEC1<19>	IPC8<20:18>	IPC8<17:16>	Yes
PMPE – Parallel Master Port Error	52	34	IFS1<20>	IEC1<20>	IPC8<20:18>	IPC8<17:16>	Yes
SPI2E – SPI2 Fault	53	35	IFS1<21>	IEC1<21>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2RX – SPI2 Receive Done	54	35	IFS1<22>	IEC1<22>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2TX – SPI2 Transfer Done	55	35	IFS1<23>	IEC1<23>	IPC8<28:26>	IPC8<25:24>	Yes
U2E – UART2 Error	56	36	IFS1<24>	IEC1<24>	IPC9<4:2>	IPC9<1:0>	Yes
U2RX – UART2 Receiver	57	36	IFS1<25>	IEC1<25>	IPC9<4:2>	IPC9<1:0>	Yes
U2TX – UART2 Transmitter	58	36	IFS1<26>	IEC1<26>	IPC9<4:2>	IPC9<1:0>	Yes
I2C2B – I2C2 Bus Collision Event	59	37	IFS1<27>	IEC1<27>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2S – I2C2 Slave Event	60	37	IFS1<28>	IEC1<28>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2M – I2C2 Master Event	61	37	IFS1<29>	IEC1<29>	IPC9<12:10>	IPC9<9:8>	Yes
U3E – UART3 Error	62	38	IFS1<30>	IEC1<30>	IPC9<20:18>	IPC9<17:16>	Yes
U3RX – UART3 Receiver	63	38	IFS1<31>	IEC1<31>	IPC9<20:18>	IPC9<17:16>	Yes
U3TX – UART3 Transmitter	64	38	IFS2<0>	IEC2<0>	IPC9<20:18>	IPC9<17:16>	Yes
U4E – UART4 Error	65	39	IFS2<1>	IEC2<1>	IPC9<28:26>	IPC9<25:24>	Yes
U4RX – UART4 Receiver	66	39	IFS2<2>	IEC2<2>	IPC9<28:26>	IPC9<25:24>	Yes
U4TX – UART4 Transmitter	67	39	IFS2<3>	IEC2<3>	IPC9<28:26>	IPC9<25:24>	Yes
U5E – UART5 Error	68	40	IFS2<4>	IEC2<4>	IPC10<4:2>	IPC10<1:0>	Yes
U5RX – UART5 Receiver	69	40	IFS2<5>	IEC2<5>	IPC10<4:2>	IPC10<1:0>	Yes
U5TX – UART5 Transmitter	70	40	IFS2<6>	IEC2<6>	IPC10<4:2>	IPC10<1:0>	Yes
CTMU – CTMU Event	71	41	IFS2<7>	IEC2<7>	IPC10<12:10>	IPC10<9:8>	Yes
DMA0 – DMA Channel 0	72	42	IFS2<8>	IEC2<8>	IPC10<20:18>	IPC10<17:16>	No
DMA1 – DMA Channel 1	73	43	IFS2<9>	IEC2<9>	IPC10<28:26>	IPC10<25:24>	No
DMA2 – DMA Channel 2	74	44	IFS2<10>	IEC2<10>	IPC11<4:2>	IPC11<1:0>	No
DMA3 – DMA Channel 3	75	45	IFS2<11>	IEC2<11>	IPC11<12:10>	IPC11<9:8>	No
		Lowe	st Natural Or	der Priority			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of available peripherals.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess		Ċ,								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH2CPTR	31:16	—	_	—	—		—	—	—	_	—	—	_	_	_	—	—	0000
0200	DONZOLIK	15:0								CHCPT	R<15:0>								0000
3290	DCH2DAT	31:16	—	—	—	_	—	_	—	—	_	—	—	_	_	_	—	_	0000
3290	DCHZDAI	15:0	-		_	—	—		—	_				CHPDA	T<7:0>				0000
32A0	DCH3CON	31:16	_	_	_	—	_		_	_	_		_	_		_	_	—	0000
32AU	DCH3CON	15:0	CHBUSY	-	—	—	—	-	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	l<1:0>	0000
32B0	DCH3ECON	31:16	—										00FF						
0200	DONOLOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	—	—	FFF8
32C0	DCH3INT	31:16	_	—	_	—	_	_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	
0200	20110111	15:0	—	—	—	—	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	
32D0	DCH3SSA	31:16		CHSSA<31:0>															
		15:0																	0000
32E0	DCH3DSA	31:16 15:0								CHDSA	<31:0>								0000
		31:16	_	_	_			_	_			_	_		_				0000
32F0	DCH3SSIZ	15:0								CHSSIZ	2<15:0>								0000
		31:16	_	_	_	_		_		_	_	_	_	_	_	_			0000
3300	DCH3DSIZ	15:0								CHDSIZ	2<15:0>								0000
0040	DOLIGODTO	31:16	_	_	—	_	_	_	_	—	_	_	—	_	_	_	_		0000
3310	DCH3SPTR	15:0								CHSPT	R<15:0>								0000
2220	DCH3DPTR	31:16	—	—	—	—	_	—	_	—	—	—	—	—	—	—	_	_	0000
3320	DCH3DFTK	15:0			-				-	CHDPT	R<15:0>		_				-		0000
3330	DCH3CSIZ	31:16	—	—	—	—	_	_	—	—	—	—	—	_	—	—	—	—	0000
0000	DOLIDOOIT	15:0								CHCSIZ	2<15:0>								0000
3340	DCH3CPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
		15:0								CHCPT	R<15:0>								0000
3350	DCH3DAT	31:16	_	—	—		_	—	—		_	—	—		—	—	—		0000
		15:0	—	—	—	—	—	—	—	—				CHPDA	1<7:0>				0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24						—	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10						—	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	-	—	—	-	—	—	_
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	DPPULUP: D+ Pull-Up Enable bit

- 1 = D+ data line pull-up resistor is enabled
- 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled
- 0 = D- data line pull-up resistor is disabled

bit 5 **DPPULDWN:** D+ Pull-Down Enable bit

- 1 = D+ data line pull-down resistor is enabled
- 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled
- bit 3 **VBUSON:** VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—		—	_	—	—	_			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—		—	_	—	—	_			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—		—	_	—	—	_			
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
7.0	UACTPND	_		USLPGRD	USBBUSY ⁽¹⁾		USUSPEND	USBPWR			

REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

zogonai			
R = Readable bit W = Writable bit		U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
 - **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
		—	—	—		—	—	—
00.16	U-0	U-0						
23:16			_	_	_	_	_	—
15:8	U-0	U-0						
10.0	_	_	_	_		_	_	—
	R/W-0	R/W-0						
7:0	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ⁽¹⁾ EOFEE ⁽²⁾	PIDEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

a Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit

- 1 = BTSEF interrupt is enabled
- 0 = BTSEF interrupt is disabled
- bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit
 - 1 = BMXEF interrupt is enabled
 - 0 = BMXEF interrupt is disabled
- bit 5 **DMAEE:** DMA Error Interrupt Enable bit
 - 1 = DMAEF interrupt is enabled
 - 0 = DMAEF interrupt is disabled
- bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
 - 1 = BTOEF interrupt is enabled
 - 0 = BTOEF interrupt is disabled
- bit 3 **DFN8EE:** Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled

Note 1: Device mode.

2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

PIC32MX330/350/370/430/450/470

REGISTER 11-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7					Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—				_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—				_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—				_	_	_
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7:0		ENDP	T<3:0>		DIR	PPBI		_

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	—	—		—	—	-	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	_	—	—	-	—	_	-	—				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	_	—	—	-	—	_	-	—				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				BDTPTR	H<23:16>							

REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** BDT Base Address bits This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

	COSTER 11-19. UIBUTF3. USB BUT FAGE 3 REGISTER											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	—	-	_	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	_	—	-	_	—	—				
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	—	_	—	-	_	—	—				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				BDTPTR	U<31:24>							

REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: BDT Base Address bits

This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

12.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only options.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

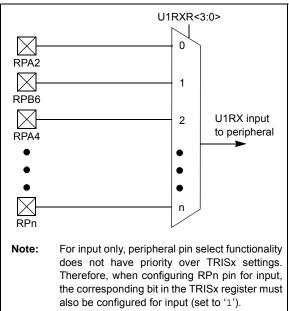
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

12.3.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


12.3.4 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 12-1, are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 12-1.

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 12-2:

REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 12-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection
INT3	INT3R	INT3R<3:0>	0000 = RPD2 0001 = RPG8
T2CK	T2CKR	T2CKR<3:0>	0010 = RPF4 0011 = RPD10
IC3	IC3R	IC3R<3:0>	0100 = RPF1 0101 = RPB9
U1RX	U1RXR	U1RXR<3:0>	
U2RX	U2RXR	U2RXR<3:0>	1000 - RFB3 1001 = Reserved 1010 = RPC1 ⁽³⁾
U5CTS	U5CTSR ⁽³⁾	U5CTSR<3:0>	$\frac{1011}{1011} = \text{RPD14(3)}$ 1100 = RPG1(3)
REFCLKI	REFCLKIR	REFCLKIR<3:0>	1101 = RPA14 ⁽³⁾ 1110 = Reserved 1111 = RPF2 ⁽¹⁾
INT4	INT4R	INT4R<3:0>	0000 = RPD3 0001 = RPG7
T5CK	T5CKR	T5CKR<3:0>	0010 = RPF5 0011 = RPD11
IC4	IC4R	IC4R<3:0>	0100 = RPF0 0101 = RPB1
U3RX	U3RXR	U3RXR<3:0>	
U4CTS	U4CTSR	U4CTSR<3:0>	1000 = Ri B3 1001 = Reserved 1010 = RPC4 ⁽³⁾
SDI1	SDI1R	SDI1R<3:0>	1011 = RPD15 ⁽³⁾ 1100 = RPG0 ⁽³⁾
SDI2	SDI2R	SDI2R<3:0>	1101 = RPA15 ⁽³⁾ 1110 = RPF2 ⁽¹⁾ 1111 = RPF7 ⁽²⁾
INT2	INT2R	INT2R<3:0>	0000 = RPD9 0001 = RPG6
T4CK	T4CKR	T4CKR<3:0>	0010 = RPB8 0011 = RPB15
IC2	IC2R	IC2R<3:0>	0100 = RPD4 0101 = RPB0
IC5	IC5R	IC5R<3:0>	
U1CTS	U1CTSR	U1CTSR<3:0>	1000 = Reserved 1001 = RPF12 ⁽³⁾ 1010 = RPD12 ⁽³⁾
U2CTS	U2CTSR	U2CTSR<3:0>	1011 = RPF8 ⁽³⁾ 1100 = RPC3 ⁽³⁾
SS1	SS1R	SS1R<3:0>	1101 = RPE9 ⁽³⁾ 1110 = Reserved
			1111 = RPB2

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin USB and General Purpose devices.

4: This selection is only available on General Purpose devices.

12.4 Control Registers

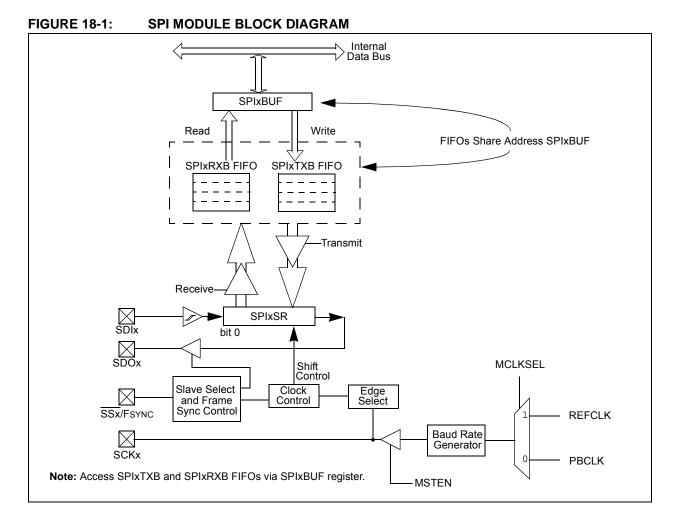
	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess)		Ð								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	6000 ANSELA	31:16	—	—	-	—	—	-	—	—	—	—	—	_	—	—	-	-	0000
0000		15:0	—	—	—	—	—	ANSELA10	ANSELA9	—	—	—	—	—	—	—	—	—	0060
6010	TRISA	31:16	_	—	_	—	_	—	—	—	—	—	—		—	—	_	_	0000
		15:0	TRISA15	TRISA14	_	—	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	xxxx
6020	PORTA	31:16	—	—		—		-	—	_			—	—	—		_	_	0000
		15:0	RA15	RA14		—	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16		_		—		—	_	_							_	_	0000
		15:0	LATA15	LATA14		—		LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16		_		—		—	_	_							_	_	0000
		15:0	ODCA15	ODCA14		—		ODCA10	ODCA9	_	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	xxxx
6050	CNPUA	31:16	—	—		—		-	—	_			—	—	—		_	_	0000
			CNPUA15	CNPUA14		—		CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	xxxx
6060	CNPDA	31:16		_		—		—	_	_							_	_	0000
	-		CNPDA15	CNPDA14	_	—	—	CNPDA10	CNPDA9	—	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	-
6070	CNCONA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	—		_	—	_			_	_					0000
6080	CNENA	31:16	—	—		—	_	-	—	_	—	—	—	—	—	—	—	—	0000
		15:0	CNIEA15	CNIEA14		—	_	CNIEA10	CNIEA9	_	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	xxxx
	01107171	31:16	—	—		—			—	_			—	—	—		_	_	0000
6090	CNSTATA	15:0	CN STATA15	CN STATA14	_	—	_	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	xxxx

TABLE 12-3:PORTA REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MX330/350/370/430/450/470


NOTES:

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. Some of the key features of the SPI module are:

- · Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during CPU Sleep and Idle mode
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	_
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	ON ⁽¹⁾	—	SIDL	ADRMUX<1:0>		PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<1:0>(2)		ALP ⁽²⁾	CS2P ⁽²⁾	CS1P ⁽²⁾		WRSP	RDSP

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	Readable bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP is enabled
 - 0 = PMP is disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
 - 00 = Address and data appear on separate pins
- bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port is enabled
 - 0 = PMWR/PMENB port is disabled
- bit 8 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port is enabled
 - 0 = PMRD/PMWR port is disabled
- bit 7-6 **CSF<1:0>:** Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS1 and PMCS2 function as Chip Select
 - 01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
 - 00 = PMCS1 and PMCS2 function as address bits 14 and 15, respectively
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
- bit 4 **CS2P:** Chip Select 0 Polarity bit⁽²⁾
 - 1 = Active-high (PMCS2)
 - $0 = \text{Active-low}(\overline{\text{PMCS2}})$
 - **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_		_	_	_	_	_
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB	<1:0> (1)		WAITM	WAITE<1:0>(1)			

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address
- bit 10 **MODE16:** 8/16-bit Mode bit
 - 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 - 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB = 1 TPB cycle, WAITE = 0 TPB cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	_	_	—	—	CAL<9	:8>
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	23:16 CAL<7:0>							
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	ON ^(1,2)	—	SIDL	_	—	—	_	—
7:0	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0
	RTSECSEL ⁽³⁾	RTCCLKON	_	_	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE

REGISTER 22-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Unimplemented: Read as '0'


bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode 0 = Continue normal operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

100-Lead TQFP (14x14x1 mm)

Example PIC32MX330F 064H-I/PT @3 0510017 O

100-Lead TQFP (12x12x1 mm)

Example

Legend	: XXX	Customer-specific information	
	Y Year code (last digit of calendar year)		
	ΥY	Year code (last 2 digits of calendar year)	
	WW	Week code (week of January 1 is week '01')	
	NNN Alphanumeric traceability code		
		Pb-free JEDEC designator for Matte Tin (Sn)	
	* This package is Pb-free. The Pb-free JEDEC designator (e3)		
		can be found on the outer packaging for this package.	
Note:	In the event the full Microchip part number cannot be marked on one line, it will		
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.		

PIC32MX330/350/370/430/450/470

33.1 Package Marking Information (Continued)

64-Lead QFN (9x9x0.9 mm) with 5.40x5.40 Exposed Pad

2
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
YYWWNNN

64-Lead QFN (9x9x0.9 mm) with 4.7x4.7 Exposed Pad

Example			
© ™			
PIC32MX330F 064H-I/RG			
e3			
0510017			

124-Lead VTLA (9x9x0.9 mm)

C XXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN Example

Legend	nd: XXX Customer-specific information		
•	Y Year code (last digit of calendar year)		
	YY	Year code (last 2 digits of calendar year)	
	WW	Week code (week of January 1 is week '01')	
	NNN	Alphanumeric traceability code	
		Pb-free JEDEC designator for Matte Tin (Sn)	
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)	
		can be found on the outer packaging for this package. \smile	
Note:	In the event the full Microchip part number cannot be marked on one line, it will		
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.		

Revision C (October 2013)

This revision includes the following updates, as listed in Table A-2.

TABLE A-2: MAJOR SECTION UPDATES

Section	Update Description			
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with	The Operating Conditions and Core sections were updated in support of 100 MHz (-40°C to +85°C) devices.			
Audio/Graphics/Touch (HMI), USB, and Advanced Analog"	Added Notes 2 and 3 regarding the conductive thermal pad to the 124-pin VTLA pin diagrams.			
2.0 "Guidelines for Getting Started	Updated the recommended minimum connection (see Figure 2-1).			
with 32-bit MCUs"	Added 2.10 "Sosc Design Recommendation".			
20.0 "Parallel Master Port (PMP)"	Updated the Parallel Port Control register, PMCON (see Register 20-1).			
	Updated the Parallel Port Mode register, PMMODE (see Register 20-2).			
	Updated the Parallel Port Pin Enable register, PMAEN (see Register 20-4).			
30.0 "Electrical Characteristics"	Removed Note 4 from the Absolute Maximum Ratings.			
	The maximum frequency for parameter DC5 In Operating MIPS vs. Voltage was changed to 100 MHz (see Table 30-1).			
	Parameter DC25a was added to DC Characteristics: Operating Current (IDD) (see Table 30-5).			
	Parameter DC34c was added to DC Characteristics: Idle Current (IIDLE) (see Table 30-5).			
	Added parameters for PIC32MX370/470 devices and removed Note 5 from DC Characteristics: Power-Down Current (IPD) (see Table 30-7).			
	Updated the Minimum, Typical, and Maximum values and added a reference to Note 3 for parameter DI30 (ICNPU) in DC Characteristics: I/O Pin Input Specifications (see Table 30-8).			
	The SYSCLK values for all required Flash Wait states were updated (see Table 30-13).			
	Added parameter DO50A (Csosc) to the Capacitive Loading Requirements on Output Pins (see Table 30-16).			
	Updated the maximum values for parameter OS10, and the Characteristics definition of parameter OS42 (GM) in the External Clock Timing Characteristics (see Table 30-17).			
31.0 "DC and AC Device Characteristics Graphs"	Updated the IPD, IIDLE, and IDD graphs, and added new graphs for the PIC32MX370/470 devices (see Figure 31-5 through Figure 31-13).			