

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx430f064h-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

100-PIN TQFP	(TOP VIEW) ^(1,2)
--------------	-----------------------------

PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L

100

			1
Pin #	Full Pin Name	Pin #	Full Pin Name
71	RPD11/PMCS1/RD11	86	VDD
72	RPD0/INT0/RD0	87	RPF0/PMD11/RF0
73	SOSCI/RPC13/RC13	88	RPF1/PMD10/RF1
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1
75	Vss	90	RPG0/PMD8/RG0
76	AN24/RPD1/RD1	91	TRCLK/RA6
77	AN25/RPD2/RD2	92	TRD3/CTED8/RA7
78	AN26/RPD3/RD3	93	PMD0/RE0
79	RPD12/PMD12/RD12	94	PMD1/RE1
80	PMD13/RD13	95	TRD2/RG14
81	RPD4/PMWR/RD4	96	TRD1/RG12
82	RPD5/PMRD/RD5	97	TRD0/RG13
83	PMD14/RD6	98	AN20/CTPLS/PMD2/RE2
84	PMD15/RD7	99	RPE3/PMD3/RE3
85	VCAP	100	AN21/PMD4/RE4

 Note
 1:
 The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the following documents, refer
	to the Documentation > Reference
	Manuals section of the Microchip PIC32
	website: http://www.microchip.com/pic32.

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 4. "Prefetch Cache" (DS60001119)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Memory" (DS60001121), Program which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX330/350/370/430/450/470 devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

	1	1						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
		_	_	_	_	_	_	SWRST ⁽¹⁾

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Legend:	HC = Cleared by hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾
 - 1 = Enable software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31.24				CHEW3<	:31:24>					
22:16	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:10	CHEW3<23:16>									
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15.0	CHEW3<15:8>									
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7:0				CHEW3	8<7:0>					

REGISTER 9-8: CHEW3: CACHE WORD 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW3<31:0>:** Word 3 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Note: This register is a window into the cache data array and is readable only if the device is not code-protected.

REGISTER 9-9: CHELRU: CACHE LRU REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0		
31:24	—	—	—	—	—	—	—	CHELRU<24>		
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23.10	CHELRU<23:16>									
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
10.0	CHELRU<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
		CHELRU<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Write '0'; ignore read

bit 24-0 **CHELRU<24:0>:** Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				CHSSA<	:31:24>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	CHSSA<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CHSSA<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				CHSSA	<7:0>				

REGISTER 10-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 10-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		CHDSA<31:24>										
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	CHDSA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8 CHDSA<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0												

Legend:						
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\textbf{Note:}}$ This must be the physical address of the destination.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2		Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7.0			_	_				

REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend	:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—	—	—				
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	—	—	—	—	—				
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—	—	—	—	—	—	—	—				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0		PID<	3:0>(1)		EP<3:0>							

REGISTER 11-15: U1TOK: USB TOKEN REGISTER

Legend:						
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾

0001 = OUT (TX) token type transaction

- 1001 = IN (RX) token type transaction
- 1101 = SETUP (TX) token type transaction

Note: All other values are reserved and must not be used.

bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

Note 1: All other values are reserved and must not be used.

12.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

12.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

12.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

12.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

ess										Bi	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISE	31:16	_	_	—	—			-										0000
00.0		15:0	—	_	TRISF13	TRISF12	_	_	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	xxxx
6520	PORTE	31:16	—	—	-	—	-	-	—	—	-	—	—	—	—	—	—	—	0000
0020		15:0	—	—	RF13	RF12	-	-	—	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATE	31:16	—	_	_	—	_	_	_		_	—	—	—	—	_			0000
0000	2	15:0	—	_	LATF13	LATF12	—	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCE	31:16	—			—		_			_	—			—	—			0000
0040	000	15:0	—		ODCF13	ODCF12		_		ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	xxxx
6550	CNPLIE	31:16	—			—		_			_	—			—	—			0000
0000		15:0	—		CNPUF13	CNPUF12		_		CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	xxxx
6560	CNPDE	31:16	—			—		_			_	—			—	—			0000
0000		15:0	—	_	CNPDF13	CNPDF12	—	—	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	xxxx
6570	CNCONE	31:16	—	—	—	—	_	-	-	—	-	—	—	-	—	—	_	—	0000
0070	CINCOIN	15:0	ON	_	SIDL	—	-	_	_	—	_	—	—	_	—	—	_	—	0000
6580		31:16	_		—	—				_		_	_		_	_	_	_	0000
0300	CINLINI	15:0	_		CNIEF13	CNIEF12				CNIEF8	CNIEF7	_	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	xxxx
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	CN STATF7	_	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	xxxx

TABLE 12-11: PORTF REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, AND PIC32MX370F512L DEVICES

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

ss										Bi	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB38	RPA14R ⁽¹⁾	31:16		—	—	—	—	—	—	—	_	—	—	—	—	_	—		0000
		15:0	_	-		_	-		-	_	_	_	_	_		RPA14	4<3:0>		0000
FB3C	RPA15R ⁽¹⁾	31:16	_	_		_	_		_		_				_			—	0000
		15:0	_	_		_	_		_		_					RPA1:	o<3:0>		0000
FB40	RPB0R	31:16					_								_		-	—	0000
		15:0	_	_		_	_		_		_					RPB0	<3:0>		0000
FB44	RPB1R	31:16		_			_		_					_			-		0000
		15:0	_	_			_		_					_		RPB1	<3:0>		0000
FB48	RPB2R	31:10	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	0000
		15.0	_				_		_	_				_		RPB2	<3.0>		0000
FB4C	RPB3R	31.10								_					_			_	0000
		15:0		_		_	_		_		_			_		RPB3	<3:0>		0000
FB54	RPB5R	31.10	_				_		_	_				_	_		-	_	0000
		15.0								_						RPB0	<3.0>		0000
FB58	RPB6R	31:16		_		_	_		_		_			_	_		-	_	0000
		15.0	_				_		_	_				_		RPB0	<3.0>		0000
FB5C	RPB7R	31.10								_					_		-	_	0000
		15.0								_						RPB/	<3.0>		0000
FB60	RPB8R	15.0		_						_					_		-2:0>	_	0000
		10.0														RFDO	<3.0>		0000
FB64	RPB9R	15.0															-3:0>	_	0000
		31.16														KF D3	< 3.0>		0000
FB68	RPB10R	15.0																_	0000
		31.16																_	0000
FB78	RPB14R	15.0														 RPB1/	1<3:0>		0000
		31.16															+ +0.0+	_	0000
FB7C	RPB15R	15.0														RPB1	5<3:0>		0000
		31.16		_					_				_	_	_				0000
FB84	RPC1R ⁽¹⁾	15.0														PPC1	<3:0>		0000
		31.16	_					_		_		_	_			_	-0.02		0000
FB88	RPC2R ⁽¹⁾	15.0	_	_		_	_	_		_	_	_	_			RPC2	<3.0>		0000
		31.16	_	_		_	_	_		_	_	_	_					_	0000
FB8C	RPC3R ⁽¹⁾	15.0	_	_	_	_	_	_	_	_	_	_	_	_		RPC3	<3.0>		0000
		10.0														11 00			0000

PIC32MX330/350/370/430/450/470

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend: Note 1:

This register is not available on 64-pin devices.

This register is only available on devices without a USB module. 2:

This register is not available on 64-pin devices with a USB module. 3:

FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)⁽¹⁾

17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

REGISTE	R 19-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in the PIC32MX330/350/370/430/450/470 family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 30 Mbps at 120 MHz
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- · Loopback mode for diagnostic support
- · LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 20-1 illustrates a simplified block diagram of the UART.

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	-	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	—	OB3E	OB2E	OB1E	OB0E

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Set by Hardware	SC = Cleared by software				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 IBxF: Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)0 = No underflow occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽³⁾ 11111111 = Alarm will trigger 256 times

00000000 = Alarm will trigger one time

The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TARI E 27-1·	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS
IADLE ZI-I.	FERIFIERAL MODULE DISABLE DITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМИ	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
12C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX330/350/ 370/430/450/470 Controller Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

FIGURE 31-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 31-30: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—	_	ns	—
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	—
SP20	TscF	SCKx Output Fall Time (Note 4)	—	_		ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	_	ns	See parameter DO32
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—		ns	See parameter DO31
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	15	ns	VDD > 2.7V
			—		20	ns	VDD < 2.7V
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	15	—		ns	_
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	15	—		ns	VDD > 2.7V
			20	—	_	ns	VDD < 2.7V
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	15	_	_	ns	VDD > 2.7V
			20	_	_	ns	VDD < 2.7V

Note 1: These parameters are characterized, but not tested in manufacturing.

- Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only 2: and are not tested.
- The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not 3: violate this specification.
- Assumes 50 pF load on all SPIx pins. 4:

PIC32MX330/350/370/430/450/470

FIGURE 31-20: PARALLEL SLAVE PORT TIMING

TABLE 31-38: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20	_	—	ns	_
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40	—	—	ns	—
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	—	—	60	ns	—
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	—	10	ns	—
PS5	Tcs	CS Active Time	Трв + 40	_	_	ns	—
PS6	Twr	WR Active Time	Трв + 25	_	_	ns	—
PS7	TRD	RD Active Time	Трв + 25	_	_	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.