

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx430f064l-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

10	0-PIN TQFP (TOP VIEW) ^(1,2,3)		
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L		
			100 1
Pin #	Full Pin Name	Pin #	Full Pin Name
71	RPD11/PMCS1/RD11	86	Vdd
72	RPD0/RD0	87	RPF0/PMD11/RF0
73	SOSCI/RPC13/RC13		
		88	RPF1/PMD10/RF1
74	SOSCO/RPC14/T1CK/RC14	88	RPF1/PMD10/RF1 RPG1/PMD9/RG1
74 75			
	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1
75	SOSCO/RPC14/T1CK/RC14 Vss	89 90	RPG1/PMD9/RG1 RPG0/PMD8/RG0
75 76	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1	89 90 91	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6
75 76 77	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2	89 90 91 92	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7
75 76 77 78	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3	89 90 91 92 93	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0
75 76 77 78 79	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4	89 90 91 92 93 94	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12
75 76 77 78 79 80	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13	89 90 91 92 93 94 95	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14
75 76 77 78 79 80 81	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4	89 90 91 92 93 94 95 96	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12 TRD0/RG13 AN20/PMD2/RE2
75 76 77 78 79 80 81 82	SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/RPD3/RD3 RPD12/PMD12/RD12 PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5	89 90 91 92 93 94 95 96 97	RPG1/PMD9/RG1 RPG0/PMD8/RG0 TRCLK/RA6 TRD3/CTED8/RA7 PMD0/RE0 PMD1/RE1 TRD2/RG14 TRD1/RG12 TRD0/RG13

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.

		Pin Numb	er							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description				
CVREF-	15	28	A21	I	Analog	Comparator Voltage Reference (Low)				
CVREF+	16	29	B17	Ι	Analog	Comparator Voltage Reference (High)				
CVREFOUT	23	34	A24	Ι	Analog	Comparator Voltage Reference (Output)				
C1INA	11	20	A12	I	Analog					
C1INB	12	21	B11	I	Analog	Comparator 1 Inputa				
C1INC	5	11	B6	I	Analog	Comparator 1 Inputs				
C1IND	4	10	A7	I	Analog					
C2INA	13	22	A13	Ι	Analog					
C2INB	14	23	B13	Ι	Analog					
C2INC	8	14	A9	Ι	Analog	Comparator 2 Inputs				
C2IND	6	12	A8	I	Analog					
C1OUT	PPS	PPS	PPS	0		Comparator 1 Output				
C2OUT	PPS	PPS	PPS	0		Comparator 2 Output				
PMALL	30	44	A29	0	TTL/ST	Parallel Master Port Address Latch Enable Low Byte				
PMALH	29	43	B24	0	TTL/ST	Parallel Master Port Address Latch Enable High Byte				
PMA0	30	44	A29	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)				
PMA1	29	43	B24	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)				
PMA2	8	14	A9	0	TTL/ST					
PMA3	6	12	A8	0	TTL/ST					
PMA4	5	11	B6	0	TTL/ST					
PMA5	4	10	A7	0	TTL/ST					
PMA6	16	29	B17	0	TTL/ST					
PMA7	22	28	A21	0	TTL/ST					
PMA8	32	50	A32	0	TTL/ST					
PMA9	31	49	B27	0	TTL/ST					
PMA10	28	42	A28	0	TTL/ST	Devellet Meeter Dert date (Develtingered Meeter				
PMA11	27	41	B23	0	TTL/ST	Parallel Master Port data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes)				
PMA12	24	35	B20	0	TTL/ST					
PMA13	23	34	A24	0	TTL/ST]				
PMA14	45	71	A46	0	TTL/ST]				
PMA15	44	70	B38	0	TTL/ST]				
PMCS1	45	71	A46	0	TTL/ST]				
PMCS2	44	70	B38	0	TTL/ST]				
PMD0	60	93	B52	I/O	TTL/ST	1				
PMD1	61	94	A64	I/O	TTL/ST	1				
PMD2	62	98	A66	I/O	TTL/ST	1				
	ST = Schmi		tible input or ou out with CMOS			alog = Analog input P = Power = Output I = Input				

TARI E 1-1. PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX330/350/370/430/ 450/470 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.8 "External Oscillator Pins")

The following pins may be required:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX330/350/370/430/450/470 family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	NVMDATA<31:24>														
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:16	NVMDATA<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	NVMDATA<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				NVMD	ATA<7:0>										

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	NVMSRCADDR<31:24>														
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:16	NVMSRCADDR<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	NVMSRCADDR<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				NVMSRC	ADDR<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Bit Range Bit 31/23/15/7 Bit 30/22/14/6 Bit 29/21/13/5 Bit 28/20/12/4 Bit 27/19/11/3 Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8/0 31:24 U-0 U-0 <td< th=""></td<>														
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24 23:16		—	_	—	—		—	—						
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
23.10	CHAIRQ<7:0> ⁽¹⁾													
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
15:8				CHSIRQ•	<7:0>(1)									
7:0	S-0	S-0 S-0		R/W-0	R/W-0	U-0	U-0	U-0						
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN									

REGISTER 10-8 DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 31-24	Unimplemented: Read as '0'
bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
	00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
h:4 7	
bit 7	CFORCE: DMA Forced Transfer bit
	1 = A DMA transfer is forced to begin when this bit is written to a '1'
	0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match
	0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs

- Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess											Bi	ts							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	U1FRML ⁽³⁾	31:16	_			—	—	—				—		_	_	—			0000
5260	UTFRIVIL	15:0	_	_	_	_	_	_	_	_				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	—	_		_	_	_	_	_	-	—	_	—	—	_			0000
5290		15:0	—	—	—	—	—	—	_	—	_	—	_	_	—		FRMH<2:0>	>	0000
52A0	U1TOK	31:16	—	_	—	_	_	_	_	—		-		_	_	_	—	—	0000
JZAU	AND UTTOK 15:0 PID<3:0> EP<3:0>						•	0000											
52B0	U1SOF	31:16	_	_	_	_	_	_	_	_		—	_	—	_	_		_	0000
52.00	0130F	15:0	—	—	_	—	—	—	_	_				CNT<7	7:0>				0000
52C0	U1BDTP2	31:16	—	_	-	_	_	_	_	_		—		—	_	_			0000
5200	UIBDIF2	15:0	—	_	-	_	_	_	_	_				BDTPTRH	<23:16>				0000
52D0	U1BDTP3	31:16	—	_	-	_	_	_	_	_		—		—	_	_			0000
52D0	UIBDIF3	15:0	—	_	-	_	_	_	_	_				BDTPTRU	<31:24>				0000
52E0	U1CNFG1	31:16	—	_	-	_	_	_	_	_		—		—	_	_			0000
52EU	UTCINI GT	15:0	—	—	_	—	—	—	_	_	UTEYE	UOEMON		USBSIDL	—	_		UASUSPNE	0000
5300	U1EP0	31:16	_	_		—	—	—	_		_	—	_	—	—	—			0000
5500	UIEFU	15:0	—	_	-	_	_	_	_	_	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5310	U1EP1	31:16	—	_	-	_	_	_	_	_		—		—	_	_			0000
5510	UILFI	15:0	_	_		—	—	—	_		_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5320	U1EP2	31:16	—	—	_	—	—	—	—		_	—	_	—	_	—			0000
5520	UILFZ	15:0	—	_	_	_	_	_	_	_		—		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5330	U1EP3	31:16	—	—	_	—	—	—	—		_	—	_	—	_	—			0000
5550	UTEI 3	15:0	_	—	—	—	—	—	—	—		—		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340	U1EP4	31:16	—	—	—	—	—	—	_	—	_	—	_	_	—	—	_	_	0000
5540	01214	15:0	_	—	—	—	—	—	—	—		—		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5350	U1EP5	31:16	—	—	—	—	—	—	—	—	-	—	_	_	—	—	_	—	0000
5550	UTEI 5	15:0	_	—	—	—	—	—	—	—		—		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5360	U1EP6	31:16	_	—	—	—	—	—	—	—		—		_	—	—	—	—	0000
5500	UILI U	15:0	—	_	—	_	_	_	—	—	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5370	U1EP7	31:16	—	_	_	_	_	_	_	_		—		-	—	—			0000
3370	UILF /	15:0	—	_	_	_	_	_	—	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5380	U1EP8	31:16	—	—	_	—	—	—	_	_		—		-	—	—		—	0000
5500	UILFO	15:0	_	_	_	—	—	—	_			—		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

This register does not have associated CLR, SET and INV registers. 3:

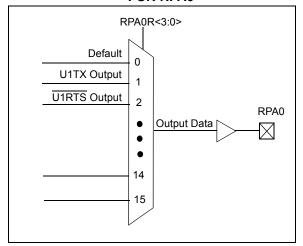
4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_		—	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_		—	_	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	_	_		—	_	_	—
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
7:0	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF ⁽²⁾	IDLEIF	TRNIF ⁽³⁾	SOFIF	UERRIF ⁽⁴⁾	URSTIF ⁽⁵⁾
	OTTLE		REGOMEN	IDEEN		0011	OLIVI	DETACHIF ⁽⁶⁾
								1

REGISTER 11-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Setta	ble bit
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'


	-	
bit 7		STALLIF: STALL Handshake Interrupt bit 1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
		In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
		0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
		1 = Peripheral attachment was detected by the USB module
		0 = Peripheral attachment was not detected
bit 5		RESUMEIF: Resume Interrupt bit ⁽²⁾
		1 = K-State is observed on the D+ or D- pin for 2.5 µs
		0 = K-State is not observed
bit 4		IDLEIF: Idle Detect Interrupt bit
		1 = Idle condition detected (constant Idle state of 3 ms or more)0 = No Idle condition detected
bit 3		TRNIF: Token Processing Complete Interrupt bit ⁽³⁾
DILS		1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information
		0 = Processing of current token not complete
bit 2		SOFIF: SOF Token Interrupt bit
		1 = SOF token received by the peripheral or the SOF threshold reached by the host
		0 = SOF token was not received nor threshold reached
bit 1		UERRIF: USB Error Condition Interrupt bit ⁽⁴⁾
		1 = Unmasked error condition has occurred
		0 = Unmasked error condition has not occurred
bit 0		URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
		1 = Valid USB Reset has occurred
		0 = No USB Reset has occurred
bit 0		DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁶⁾
		1 = Peripheral detachment was detected by the USB module
		0 = Peripheral detachment was not detected
Note	1:	This bit is valid only if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for
		$2.5 \mu\text{s}$, and the current bus state is not SE0.
	2:	When not in Suspend mode, this interrupt should be disabled.
	3:	Clearing this bit will cause the STAT FIFO to advance.
	4:	Only error conditions enabled through the U1EIE register will set this bit.
	5:	Device mode.
	6:	Host mode.

12.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

12.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

12.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

12.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 12-16:PORTG REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess		Bits																	
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	_	-	_	_	_		—	_	_	—			_	—	_	_	0000
0000	ANSELG	15:0		-	-	-	-		ANSELG9	ANSELG8	ANSELG7	ANSELG6			_	—	—	—	01C0
6610	TRISG	31:16	_	-	_	_	_		—	—	-	—	_	_	—	—	_	—	0000
0010	TRISO	15:0	_	_	_	_	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	_	—	xxxx
6620	PORTG	31:16	_		-	_	-		_	_		—	_		_	—	_	_	0000
0020	FURIO	15:0	_		-	_	-		RG9	RG8	RG7	RG6	_		RG3 ⁽²⁾	RG2 ⁽²⁾	_	_	xxxx
6630	LATG	31:16	_		-	—			—	—		—	-		—	—	—	—	0000
0030	D LATG 1	15:0	_	_	—	—	—	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	—	—	xxxx
6640	ODCG	31:16	_	_	—	—	—	_	—	—	_	—	_	_	—	—	—	—	0000
0040	0000	15:0	_	_	—	—	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	—	—	xxxx
6650	CNPUG	31:16	—	_	—	—	—		—	—		—	—		—	—	_	—	0000
0000		15:0	—	_	—	—	—		CNPUG9	CNPUG8	CNPUG7	CNPUG6	—		CNPUG3	CNPUG2	_	—	xxxx
6660	CNPDG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0000		15:0	—	_	—	—	_		CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	_	CNPDG3	CNPDG2	_	—	xxxx
6670	CNCONG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0070	oncono	15:0	ON	_	SIDL	—	_		—	_		—	—	_	—	—	_	—	0000
6680	CNENG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0000	ONLING	15:0	—	_	—	—	_		CNIEG9	CNIEG8	CNIEG7	CNIEG6	—	_	CNIEG3	CNIEG2	_	—	xxxx
		31:16	—	_	—	—	—		—	_	_	—	—		—	—	_	—	0000
6690	CNSTATG	15:0	—	-	_	—	_	-	CN STATG9	CN STATG8	CN STATG7	CN STATG6	—		CN STATG3	CN STATG2	—	—	xxxx

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

TABLE 12-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SSS										Bi	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FA04	INT1R	31:16	_	—	—		—	_	—	_	_	—	—	—	_				0000
		15:0	_	—		_	_	_	—	—	_	—	—	_		INT1F	<3:0>		0000
FA08	INT2R	31:16	_	_			_			_		_			—			—	0000
		15:0		_	—		—		—		_	_	—	_		INT2F	(<3:0>		0000
FA0C	INT3R	31:16 15:0		_			_		_	_		_	_			INT3F		_	0000
		31:16		_			_		_			_	_	_	_			_	0000
FA10	INT4R	15:0	_												_	INT4F		_	0000
-		31:16													_		_	_	0000
FA18	T2CKR	15:0	_		_											T2CKF	२<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FA1C	T3CKR	15:0	_	_	_			_				_				T3CKF	२<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
FA20	T4CKR	15:0	_	_	_	-	—	-	—	_	_	_	—	_		T4CKF	R<3:0>		0000
5404	TEOKD	31:16	_	_	—	_	_	_	—	_		_	—	_	—	—	—		0000
FA24	T5CKR	15:0	—	—	—	_	—		—	_	_	—	—	—		T5CKF	२<3:0>		0000
FA28	IC1R	31:16	_	—	—		—		—	_		—	—	—	—				0000
FA20	ICIK	15:0	_	_		_		_		—	_	_				IC1R	<3:0>		0000
FA2C	IC2R	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—		0000
1720	1021	15:0	_	_	—	_	—	_	—	—	_	_	—	—		IC2R	<3:0>		0000
FA30	IC3R	31:16		_		_	_		_	_	_	_	_	_	—	—	_	—	0000
		15:0	—	—		—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
FA34	IC4R	31:16	_	—	—	_		—	—			—	—	—		—	—		0000
		15:0	_	—	_		—	_	—			—	—	—		IC4R	<3:0>		0000
FA38	IC5R	31:16		—		_	—		—		_	—	—	—	—		—		0000
		15:0	_			_				_	_					IC5R	<3:0>		0000
FA48	OCFAR	31:16	_			_				_	_				—	_	—		0000
		15:0		_	_	_	—		—		_	_	—	_		OCFA			0000
FA50	U1RXR	31:16	_	_	_		_		—			_	—	_		—	—		0000
	l	15:0	_	_	—	_		_	—	-	_	_	—			U1RXI	<<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

DS60001185F-page 159

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

SS			Bits																
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB90	RPC4R ⁽¹⁾	31:16 15:0								_	_				—		— <3:0>	_	0000
FBB4	RPC13R	31:16	—	—	_	—			_	_	_	_	_	_	_	—	_	_	0000
		15:0 31:16						_		_					_	RPC1	3<3:0>	_	0000
FBB8	RPC14R	15:0 31:16		_	_			_	—	—			_			RPC1	4<3:0>		0000
FBC0	RPD0R	15:0	_	_	_	_	_		_	_	_		_			RPD0	—)<3:0>		0000
FBC4	RPD1R	31:16 15:0		_	_	_	_	_	_	_			_		—	RPD1	<3:0>	_	0000
FBC8	RPD2R	31:16 15:0							—	_	_				—		 2<3:0>	_	0000
FBCC	RPD3R	31:16		_	_	_	_		_	_	_		_		—			_	0000
		15:0 31:16								_					_	RPD3	3<3:0>	_	0000
FBD0	RPD4R	15:0 31:16		_	_	_	-		_	_	_		_		_	RPD4	<3:0>	_	0000
FBD4	RPD5R	15:0	_		_		_	_	_	_	_		_				5<3:0>		0000
FBE0	RPD8R	31:16 15:0		_	_	_				-	_				—	- RPD8	— 3<3:0>	—	0000
FBE4	RPD9R	31:16 15:0								_	_				—		—)<3:0>	_	0000
FBE8	RPD10R	31:16			_		_		_	_	_	-			_		_	_	0000
		15:0 31:16		-		-	_	-		_	_	-	_	-	_	RPD1	0<3:0>	_	0000
FBEC	RPD11R	15:0 31:16								_	_				_	RPD1	1<3:0>	_	0000
FBF0	RPD12R ⁽¹⁾	15:0		_	_	_	_			_	_		_			RPD1	 2<3:0>		0000
FBF8	RPD14R ⁽¹⁾	31:16 15:0		_		_			_	_	_		_		—	RPD1	— 4<3:0>	—	0000
FBFC	RPD15R ⁽¹⁾	31:16 15:0								_	_	_		_	—	-	— 5<3:0>	—	0000
FC0C	RPE3R	31:16		_	_	_	_		_	_	_				—	_	_	_	0000
1000		15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPE3	8<3:0>		0000

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

3: This register is not available on 64-pin devices with a USB module.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

2012-2016	
Microchip	
Technology	
Inc	

0

SS										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FC14	RPE5R	31:16	_	_	—	—	—	—	—	_	—	—	—	—	_	_	_	—	000
		15:0	—	_	—	—	—	—	—	-	—	—	—	—		RPE5	<3:0>		000
FC20	RPE8R ⁽¹⁾	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—		_	—	000
. 020		15:0	—		—	—		—	—	_	—	_	—	—		RPE8	<3:0>		000
FC24	RPE9R ⁽¹⁾	31:16	_	_	—	—	—	—	_	_	—	—	—	_	—	_	_	—	000
		15:0	_	_	—	—	—	—	_	_	—	—	—	_		RPE9	<3:0>		000
FC40	RPF0R	31:16	-	_	-	-	_	-	_	_	-	-	-	_	_	—	—		000
		15:0	_		_	_		_	_		_	_	_			RPF0	<3:0>		000
FC44	RPF1R	31:16	_	_	_	_		_	_			_	—	_	—	-	-		000
		15:0	_		_	_		_			_	_	_			RPF1	<3:0>		000
FC48	RPF2R ⁽³⁾	31:16	_		—	—	—	—		_	_	_	—		—	 RPF2		—	000
		15:0	_				—			_	_	_				RPFZ	<3.0>		000
FC4C	RPF3R ⁽²⁾	31:16 15:0	—	_	_	_	_	_		_		_	_		-	 RPF3			000
		31:16						_							_	RPFJ	<3.0>		000
FC50	RPF4R	15:0	_			_	_					_	_	_		 RPF4			000
		31:16															<0.0×	_	000
FC54	RPF5R	15:0														 RPF5	<3:0>		000
		31:16			_	_		_				_	_		_		-0.02	_	000
FC58	RPF6R ⁽²⁾	15:0	_	_		_	_	_		_		_	_	_		RPF6			000
		31:16	_	_	_	_		_	_	_	_	_		_	_	_	_	_	000
FC60	RPF8R ⁽¹⁾	15:0	_		_	_		_	_	_	_	_	_	_		RPF8	<3:0>		000
	(1)	31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	000
FC70	RPF12R ⁽¹⁾	15:0	_	_	_	_		_	_	_	_	_	_	_		RPF12	2<3:0>		000
	(4)	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_		000
FC74	RPF13R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF13	3<3:0>		000
		31:16	_	_	_	_		_		_	_	_	_	_	_	_	_	_	000
FC80	RPG0R ⁽¹⁾	15:0	_	_	_	_		_		_	_	_	_	_		RPG0	<3:0>		000
	DDO (D(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		000
FC84	RPG1R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_		_	_	_		RPG1	<3:0>		000
F000	00000	31:16	_	—	_	_	_	_	_	_	_	_	_	_	—	_	_	_	000
FC98	RPG6R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPG6	<3:0>		000
F000	00070	31:16	_	_	_	_	—	_	—	_	_	_	_	—	-	—	—	—	000
FC9C	RPG7R	15:0	-		_	_	_					_				RPG7	<3:0>		000

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

3: This register is not available on 64-pin devices with a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_		_	_	_	_	_
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB	<1:0> (1)		WAITM	<3:0>(1)		WAITE	<1:0> (1)

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address
- bit 10 **MODE16:** 8/16-bit Mode bit
 - 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 - 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB = 1 TPB cycle, WAITE = 0 TPB cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
R	R	R	R	R	R	R	R
	VER<	:3:0> ⁽¹⁾			DEVID<27	7:24> ⁽¹⁾	
R	R	R	R	R	R	R	R
			DEVID<2	3:16> (1)			
R	R	R	R	R	R	R	R
			DEVID<	15:8> (1)			
R	R	R	R	R	R	R	R
			DEVID<	7:0>(1)			
	31/23/15/7 R R R	31/23/15/7 30/22/14/6 R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 R R R VER<3:0>(1) R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 R R R R R R R R R R R R R R R R R R R R R R R R R R R DEVID<2	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 R R R R R R VER<3:0> ⁽¹⁾ VER<2:0> ⁽¹⁾ DEVID<23:16> ⁽¹⁾ DEVID<23:16> ⁽¹⁾ R R R R R R WER R R R R R DEVID DEVID<15:8> ⁽¹⁾ DEVID<15:8	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 R R R R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ R R R R R R R R R R R R DEVID<23:16> ⁽¹⁾ DEVID<23:16> ⁽¹⁾ DEVID<15:8> ⁽¹⁾ R R R R R R R R R R R R R R R R R R R

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

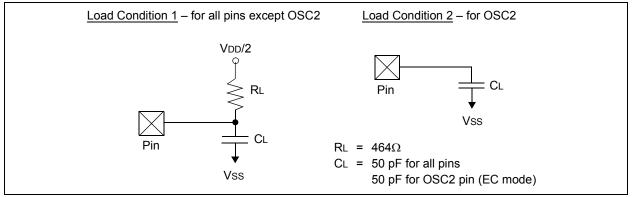
Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

TABLE 31-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments		
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.	_		10	μs	See Note 1		
D313	DACREFH	CVREF Input Voltage Reference Range	AVss		AVDD	V	CVRSRC with CVRSS = 0		
			VREF-		VREF+	V	CVRSRC with CVRSS = 1		
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size		
			0.25 x DACREFH	—	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/ 32 step size		
D315	DACRES	Resolution	_	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>		
			—		DACREFH/32		CVRCON <cvrr> = 0</cvrr>		
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>		
			_		1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>		

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.


TABLE 31-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (3 ohm). Typical voltage on the VCAP pin is 1.8V.

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX330/350/370/430/450/470 AC characteristics and timing parameters.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

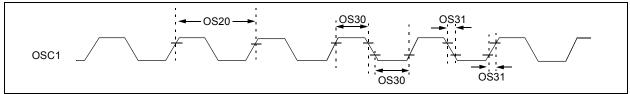
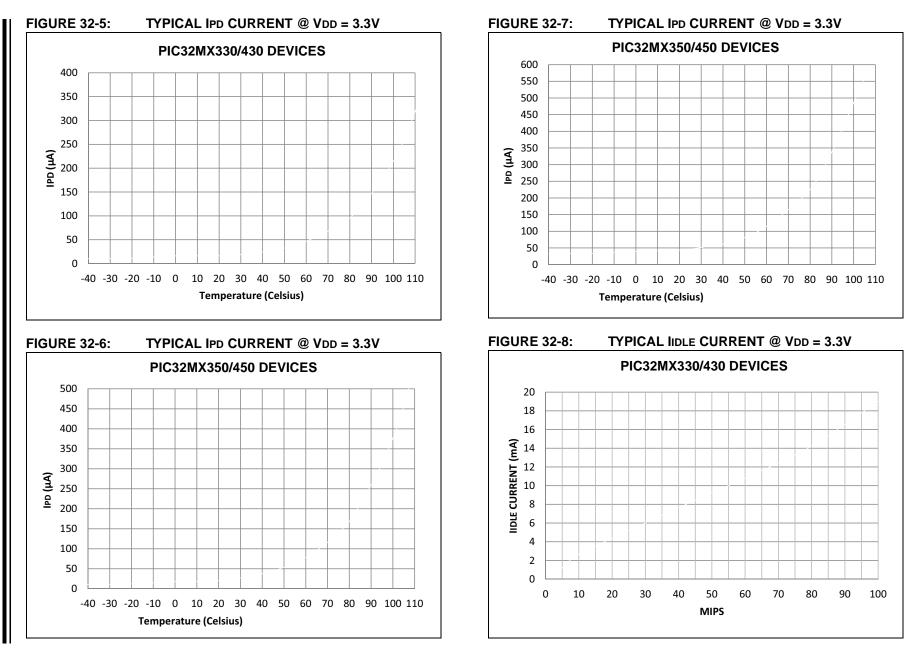


TABLE 31-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
DO50	Cosco	OSC2 pin	_	_	15		In XT and HS modes when an external crystal is used to drive OSC1	
DO56	Сю	All I/O pins and OSC2	_		50	pF	EC mode	
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C mode	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


FIGURE 31-2: EXTERNAL CLOCK TIMING

AC CHARACTERISTICS				$\label{eq:standard operating Conditions: 2.3V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—	
		Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode (Note 1)	250		ns		
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus must be free before a new	
			400 kHz mode	1.3		μs		
			1 MHz mode (Note 1)	0.5	-	μS	transmission can start	
IS50	Св	Bus Capacitive Loading			400	pF	—	

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

PIC32MX330/350/370/430/450/470