

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | MIPS32 ® M4K™                                                                  |
| Core Size                  | 32-Bit Single-Core                                                             |
| Speed                      | 80MHz                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG                  |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                     |
| Number of I/O              | 81                                                                             |
| Program Memory Size        | 64KB (64K x 8)                                                                 |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 16К х 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                    |
| Data Converters            | A/D 28x10b                                                                     |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 100-TQFP                                                                       |
| Supplier Device Package    | 100-TQFP (12x12)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx430f064l-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

### TABLE 4: PIN NAMES FOR 100-PIN DEVICES

### 100-PIN TQFP (TOP VIEW)<sup>(1,2,3)</sup>

### PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L

100

Pin # Full Pin Name Pin # Full Pin Name **RG15** Vss 1 36 2 VDD 37 VDD AN22/RPE5/PMD5/RE5 TCK/CTED2/RA1 3 38 AN23/PMD6/RE6 **RPF13/RF13** 4 39 AN27/PMD7/RE7 RPF12/RF12 5 40 RPC1/RC1 6 41 AN12/PMA11/RB12 RPC2/RC2 AN13/PMA10/RB13 7 42 8 RPC3/RC3 43 AN14/RPB14/CTED5/PMA1/RB14 RPC4/CTED7/RC4 44 AN15/RPB15/OCFB/CTED6/PMA0/RB15 9 10 AN16/C1IND/RPG6/SCK2/PMA5/RG6 45 Vss AN17/C1INC/RPG7/PMA4/RG7 11 46 Voo AN18/C2IND/RPG8/PMA3/RG8 47 RPD14/RD14 12 MCLR 48 RPD15/RD15 13 AN19/C2INC/RPG9/PMA2/RG9 49 RPF4/PMA9/RF4 14 RPF5/PMA8/RF5 15 Vss 50 VDD RPF3/RF3 16 51 TMS/CTED1/RA0 RPF2/RF2 17 52 RPE8/RE8 RPF8/RF8 18 53 RPE9/RE9 RPF7/RF7 54 19 AN5/C1INA/RPB5/RB5 RPF6/SCK1/INT0/RF6 20 55 AN4/C1INB/RB4 SDA1/RG3 21 56 22 PGED3/AN3/C2INA/RPB3/RB3 57 SCL1/RG2 PGEC3/AN2/C2INB/RPB2/CTED13/RB2 SCL2/RA2 58 23 24 PGEC1/AN1/RPB1/CTED12/RB1 59 SDA2/RA3 PGED1/AN0/RPB0/RB0 TDI/CTED9/RA4 25 60 PGEC2/AN6/RPB6/RB6 TDO/RA5 26 61 PGED2/AN7/RPB7/CTED3/RB7 62 VDD 27 VREF-/CVREF-/PMA7/RA9 63 OSC1/CLKI/RC12 28 VREF+/CVREF+/PMA6/RA10 OSC2/CLKO/RC15 29 64 30 AVDD 65 Vss 31 AVss 66 RPA14/RA14 AN8/RPB8/CTED10/RB8 32 67 **RPA15/RA15** AN9/RPB9/CTED4/RB9 RPD8/RTCC/RD8 33 68 CVREFOUT/AN10/RPB10/CTED11PMA13/RB10 RPD9/RD9 69 34 35 AN11/PMA12/RB11 70 RPD10/PMCS2/RD10

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "VO Ports" for more information.

3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.

NOTES:

| Pin Nun               |                        |                 | er                |             |                |                                                                                                    |  |  |  |
|-----------------------|------------------------|-----------------|-------------------|-------------|----------------|----------------------------------------------------------------------------------------------------|--|--|--|
| Pin Name              | 64-pin<br>QFN/<br>TQFP | 100-pin<br>TQFP | 124-pin<br>VTLA   | Pin<br>Type | Buffer<br>Type | Description                                                                                        |  |  |  |
| PMD3                  | 63                     | 99              | B56               | I/O         | TTL/ST         |                                                                                                    |  |  |  |
| PMD4                  | 64                     | 100             | A67               | I/O         | TTL/ST         |                                                                                                    |  |  |  |
| PMD5                  | 1                      | 3               | B2                | I/O         | TTL/ST         |                                                                                                    |  |  |  |
| PMD6                  | 2                      | 4               | A4                | I/O         | TTL/ST         |                                                                                                    |  |  |  |
| PMD7                  | 3                      | 5               | B3                | I/O         | TTL/ST         |                                                                                                    |  |  |  |
| PMD8                  | _                      | 90              | A61               | I/O         | TTL/ST         | Parallel Master Port Data (Demultiplexed Master                                                    |  |  |  |
| PMD9                  | _                      | 89              | B50               | I/O         | TTL/ST         | mode) or Address/Data (Multiplexed Master modes)                                                   |  |  |  |
| PMD10                 | _                      | 88              | A60               | I/O         | TTL/ST         | ······································                                                             |  |  |  |
| PMD11                 | _                      | 87              | B49               | I/O         | TTL/ST         | -                                                                                                  |  |  |  |
| PMD12                 |                        | 79              | B43               | I/O         | TTL/ST         |                                                                                                    |  |  |  |
| PMD13                 | _                      | 80              | A54               | I/O         | TTL/ST         | -                                                                                                  |  |  |  |
| PMD14                 | _                      | 83              | B45               | I/O         | TTL/ST         | -                                                                                                  |  |  |  |
| PMD15                 | _                      | 84              | A56               | I/O         | TTL/ST         |                                                                                                    |  |  |  |
| PMRD                  | 53                     | 82              | A55               | 0           | —              | Parallel Master Port Read Strobe                                                                   |  |  |  |
| PMWR                  | 52                     | 81              | B44               | 0           | —              | Parallel Master Port Write Strobe                                                                  |  |  |  |
| VBUS <sup>(2)</sup>   | 34                     | 54              | A37               | I           | Analog         | USB Bus Power Monitor                                                                              |  |  |  |
| VUSB3V3 <b>(2)</b>    | 35                     | 55              | B30               | Р           | _              | USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD. |  |  |  |
| VBUSON <sup>(2)</sup> | 11                     | 20              | A12               | 0           |                | USB Host and OTG bus power control Output                                                          |  |  |  |
| D+ <sup>(2)</sup>     | 37                     | 57              | B31               | I/O         | Analog         | USB D+                                                                                             |  |  |  |
| D- <sup>(2)</sup>     | 36                     | 56              | A38               | I/O         | Analog         | USB D-                                                                                             |  |  |  |
| USBID <sup>(2)</sup>  | 33                     | 51              | A35               | I           | ST             | USB OTG ID Detect                                                                                  |  |  |  |
| PGED1                 | 16                     | 25              | B14               | I/O         | ST             | Data I/O pin for Programming/Debugging<br>Communication Channel 1                                  |  |  |  |
| PGEC1                 | 15                     | 24              | A15               | I           | ST             | Clock Input pin for Programming/Debugging<br>Communication Channel 1                               |  |  |  |
| PGED2                 | 18                     | 27              | B16               | I/O         | ST             | Data I/O Pin for Programming/Debugging<br>Communication Channel 2                                  |  |  |  |
| PGEC2                 | 17                     | 26              | A20               | I           | ST             | Clock Input Pin for Programming/Debugging<br>Communication Channel 2                               |  |  |  |
| PGED3                 | 13                     | 22              | A13               | I/O         | ST             | Data I/O Pin for Programming/Debugging<br>Communication Channel 3                                  |  |  |  |
| PGEC3                 | 14                     | 23              | B13               | I           | ST             | Clock Input Pin for Programming/Debugging<br>Communication Channel 3                               |  |  |  |
| TRCLK                 | _                      | 91              | B51               | 0           | _              | Trace clock                                                                                        |  |  |  |
| TRD0                  | _                      | 97              | B55               | 0           | _              | Trace Data bit 0                                                                                   |  |  |  |
| TRD1                  |                        | 96              | A65               | 0           |                | Trace Data bit 1                                                                                   |  |  |  |
| TRD2                  |                        | 95              | B54               | 0           | _              | Trace Data bit 2                                                                                   |  |  |  |
| TRD3                  | —                      | 92              | A62               | 0           | —              | Trace Data bit 3                                                                                   |  |  |  |
| CTED1                 | —                      | 17              | B9                | I           | ST             | CTMU External Edge Input 1                                                                         |  |  |  |
| CTED2                 | —                      | 38              | A26               | I           | ST             | CTMU External Edge Input 2                                                                         |  |  |  |
| CTED3                 | 18                     | 27              | B16               | I           | ST             | CTMU External Edge Input 3                                                                         |  |  |  |
| Legend:               | CMOS = CN              |                 | tible input or ou | itout       | Δn             | alog - Analog input D - Dower                                                                      |  |  |  |

#### TARI E 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

This pin is only available on devices with a USB module. 2:

This pin is not available on 64-pin devices. 3:



## 2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7  $\mu F$  to 47  $\mu F$ . This capacitor should be located as close to the device as possible.

## 2.3 Capacitor on Internal Voltage Regulator (VCAP)

### 2.3.1 INTERNAL REGULATOR MODE

A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0 "Electrical Characteristics"** for additional information on CEFC specifications.

## 2.4 Master Clear (MCLR) Pin

The  $\overline{\text{MCLR}}$  pin provides two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The  $\overline{\text{MCLR}}$  pin low generates a device Reset. Figure 2-2 illustrates a typical  $\overline{\text{MCLR}}$  circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the  $\overline{\text{MCLR}}$  pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.



# EXAMPLE OF MCLR PIN CONNECTIONS



No pull-ups or bypass capacitors are allowed on

active debug/program PGECx/PGEDx pins.

Reset period during POR.

3:

### REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit<sup>(1)</sup>
  - 1 = Enable FRC as the clock source for the USB clock source
    - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 SOSCEN: Secondary Oscillator (SOSC) Enable bit
  - 1 = Enable Secondary Oscillator
  - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
  - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
  - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX4XX devices only.

**Note:** Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

## TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP

| ess                      |                                 | 6             |             |       |       |       |        |       |      | Bi     | ts      |        |        |        |         |        |        |        |            |
|--------------------------|---------------------------------|---------------|-------------|-------|-------|-------|--------|-------|------|--------|---------|--------|--------|--------|---------|--------|--------|--------|------------|
| Virtual Addr<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range     | 31/15       | 30/14 | 29/13 | 28/12 | 27/11  | 26/10 | 25/9 | 24/8   | 23/7    | 22/6   | 21/5   | 20/4   | 19/3    | 18/2   | 17/1   | 16/0   | All Resets |
| 3060                     |                                 | 31:16         |             |       | _     | —     |        | _     | _    |        |         |        | _      | _      |         | _      |        |        | 0000       |
| 3000                     | DCHOCON                         | 15:0          | CHBUSY      | —     | —     |       | _      | —     | —    | CHCHNS | CHEN    | CHAED  | CHCHN  | CHAEN  | _       | CHEDET | CHPR   | l<1:0> | 0000       |
| 3070                     | DCH0ECON                        | 31:16         | —           | _     | —     | —     | —      | —     |      | _      |         |        | 1      | CHAIR  | Q<7:0>  |        |        |        | 00FF       |
|                          |                                 | 15:0          |             |       |       | CHSIR | Q<7:0> |       |      |        | CFORCE  | CABORT | PATEN  | SIRQEN | AIRQEN  | —      | _      | —      | FFF8       |
| 3080                     | DCH0INT                         | 31:16         | —           | _     | —     | —     | —      | —     | —    | —      | CHSDIE  | CHSHIE | CHDDIE | CHDHIE | CHBCIE  | CHCCIE | CHTAIE | CHERIE | 0000       |
|                          |                                 | 15:0          | —           | _     | —     | —     | _      | _     |      | _      | CHSDIF  | CHSHIF | CHDDIF | CHDHIF | CHBCIF  | CHCCIF | CHTAIF | CHERIF | 0000       |
| 3090                     | DCH0SSA                         | 31:16         | CHSSA<31:0> |       |       |       |        |       |      |        |         |        |        |        |         |        |        |        |            |
|                          |                                 | 15:0          |             |       |       |       |        |       |      |        |         |        |        |        |         |        |        |        | 0000       |
| 30A0                     | DCH0DSA                         | 31.10<br>15:0 |             |       |       |       |        |       |      | CHDSA  | <31:0>  |        |        |        |         |        |        |        | 0000       |
|                          |                                 | 31:16         | _           | _     | _     | _     | _      | _     |      | _      | _       | _      | _      | _      | _       | _      | _      | _      | 0000       |
| 30B0                     | DCH0SSIZ                        | 15:0          |             |       |       |       |        |       |      | CHSSIZ | Z<15:0> |        |        |        |         |        |        |        | 0000       |
|                          |                                 |               |             |       |       | _     | _      | 0000  |      |        |         |        |        |        |         |        |        |        |            |
| 30C0                     | DCH0DSIZ                        | 15:0          |             |       |       |       |        |       |      | CHDSIZ | Z<15:0> |        |        |        |         |        |        |        | 0000       |
| 0000                     |                                 | 31:16         | _           | _     | —     | _     | —      | —     | —    |        | —       | —      | —      | —      | _       | _      | —      | _      | 0000       |
| 30D0                     | DCHUSPIR                        | 15:0          |             |       |       | •     |        |       |      | CHSPTI | R<15:0> |        |        |        |         |        |        |        | 0000       |
| 2050                     |                                 | 31:16         | _           | _     | _     | -     | _      | _     | _    | _      | —       | —      | _      | _      | _       | —      | —      | —      | 0000       |
| 30E0                     | DCHUDPIR                        | 15:0          |             |       |       |       |        |       |      | CHDPTI | R<15:0> |        |        |        |         |        |        |        | 0000       |
| 30E0                     |                                 | 31:16         | _           | —     | -     | _     |        | _     | _    | —      |         |        | _      | _      | _       |        |        | _      | 0000       |
| 501.0                    | DOI 100012                      | 15:0          |             |       |       |       |        |       |      | CHCSIZ | Z<15:0> |        |        |        |         |        |        |        | 0000       |
| 3100                     | DCH0CPTR                        | 31:16         | —           | —     | —     | —     | —      | —     | —    | —      | —       | —      | —      | —      | —       | —      | —      |        | 0000       |
| 0100                     |                                 | 15:0          |             |       |       |       |        |       |      | CHCPTI | R<15:0> |        |        |        |         |        |        |        | 0000       |
| 3110                     | DCH0DAT                         | 31:16         | —           | _     |       |       | _      |       |      | —      | —       | _      | —      | —      | _       | —      | —      | —      | 0000       |
|                          |                                 | 15:0          | —           | _     | —     |       | _      | —     | —    |        |         |        |        | CHPDA  | \T<7:0> | -      |        |        | 0000       |
| 3120                     | DCH1CON                         | 31:16         | -           | _     | —     |       | _      | _     | _    | -      | -       | —      | —      | —      | _       | -      | -      | —      | 0000       |
|                          |                                 | 15:0          | CHBUSY      | _     | —     |       | _      | —     | —    | CHCHNS | CHEN    | CHAED  | CHCHN  | CHAEN  | -       | CHEDET | CHPR   | 1<1:0> | 0000       |
| 3130                     | DCH1ECON                        | 31:16         | —           | _     | —     |       | -      | —     |      |        | 050005  | CARODT | DATEN  |        | Q<7:0>  |        |        |        | OOFF       |
|                          |                                 | 15:0          |             |       |       | CHSIR | Q<7:0> |       |      |        | CFURCE  | CABORT |        | SIRQEN |         |        |        |        | F.F.F.8    |
| 3140                     | DCH1INT                         | 31.10         |             |       |       |       |        |       |      | _      | CHODIE  | CHONIE |        |        |         |        |        |        | 0000       |
|                          | -                               | 15.0          |             | _     | _     | _     | _      | _     | _    |        | CHODIF  | Спопіг | CHUDIF | CHDHIF | CHBCIF  | CHCCIF | CHIAIF | CHERIF | 0000       |
| 3150                     | DCH1SSA                         | 15.0          |             |       |       |       |        |       |      | CHSSA  | <31:0>  |        |        |        |         |        |        |        | 0000       |
|                          |                                 | 31.16         |             |       |       |       |        |       |      |        |         |        |        |        |         |        |        |        | 0000       |
| 3160                     | DCH1DSA                         | 15.0          | 1           |       |       |       |        |       |      | CHDSA  | <31:0>  |        |        |        |         |        |        |        | 0000       |
| Ļ                        |                                 |               | 0000        |       |       |       |        |       |      |        |         |        |        |        |         |        |        |        |            |

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

## PIC32MX330/350/370/430/450/470

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3      | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|------------------|------------------|--|--|--|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0                    | U-0               | U-0              | U-0              |  |  |  |
| 31:24        | —                 | —                 | _                 | —                 | —                      | —                 | —                | _                |  |  |  |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0                    | U-0               | U-0              | U-0              |  |  |  |
| 23:10        | —                 | —                 | —                 | —                 | —                      | —                 | —                | —                |  |  |  |
| 45.0         | R/W-0             | U-0               | U-0               | R/W-0             | R/W-0                  | U-0               | U-0              | U-0              |  |  |  |
| 15:8         | ON <sup>(1)</sup> | _                 | _                 | SUSPEND           | DMABUSY <sup>(1)</sup> | —                 | —                | —                |  |  |  |
| 7:0          | U-0               | U-0               | U-0               | U-0               | U-0                    | U-0               | U-0              | U-0              |  |  |  |
|              | _                 | _                 | _                 | _                 | _                      | _                 | _                | _                |  |  |  |

### REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
|-------------------|------------------|-----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

### bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit<sup>(1)</sup>
  - 1 = DMA module is enabled
  - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 **SUSPEND:** DMA Suspend bit
  - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
  - 0 = DMA operates normally

### bit 11 DMABUSY: DMA Module Busy bit<sup>(1)</sup>

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

| REGIS    | TER 18-1:                      | SPIxCON: S                              | SPI CONTROL REGISTER (CONTINUED)                                                                                                                   |
|----------|--------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 17   | SPIFE: F                       | rame Sync Puls                          | e Edge Select bit (Framed SPI mode only)                                                                                                           |
|          | 1 = Fran                       | ne synchronizati                        | on pulse coincides with the first bit clock                                                                                                        |
| 1.1.40   |                                | ne synchronizati                        | on pulse precedes the first bit clock                                                                                                              |
| bit 16   |                                | -: Enhanced Buf                         | ter Enable bit <sup>(2)</sup>                                                                                                                      |
|          | 1 - Enna                       | anced Buffer mo                         | de is disabled                                                                                                                                     |
| bit 15   |                                | Perinheral On h                         | it(1)                                                                                                                                              |
| bit io   | 1 = SPI                        | Peripheral is ena                       | abled                                                                                                                                              |
|          | 0 = SPI                        | Peripheral is dis                       | abled                                                                                                                                              |
| bit 14   | Unimple                        | mented: Read a                          | as '0'                                                                                                                                             |
| bit 13   | SIDL: St                       | op in Idle Mode I                       | bit                                                                                                                                                |
|          | 1 = Disc                       | ontinue operatio                        | n when CPU enters in Idle mode                                                                                                                     |
|          | 0 = Con                        | tinue operation i                       | n Idle mode                                                                                                                                        |
| bit 12   | DISSDO                         | Disable SDOx                            | pin bit                                                                                                                                            |
|          | 1 = SDC                        | Dx pin is not used                      | d by the module. Pin is controlled by associated PORT register                                                                                     |
| bit 11 - |                                | 22 16 - 22/16 Pi                        | t Communication Select hite                                                                                                                        |
| DIL 11-  | When Al                        | JDFN = 1:                               |                                                                                                                                                    |
|          | MODE32                         | 2 MODE16                                | Communication                                                                                                                                      |
|          | 1                              | 1                                       | 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame                                                                                              |
|          | 1                              | 0                                       | 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame                                                                                              |
|          | 0                              | 1                                       | 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame                                                                                              |
|          | 0                              | 0                                       | 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame                                                                                              |
|          |                                |                                         |                                                                                                                                                    |
|          |                                | $\frac{\text{JDEN} = 0}{\text{NODE10}}$ | O manufaction                                                                                                                                      |
|          | MODE32                         | MODE16                                  | Communication<br>32-bit                                                                                                                            |
|          | 1<br>0                         | 1                                       | 16-bit                                                                                                                                             |
|          | 0                              | 0                                       | 8-bit                                                                                                                                              |
| bit 9    | SMP: SF                        | PI Data Input Sar                       | nple Phase bit                                                                                                                                     |
|          | Master m                       | node (MSTEN =                           | <u>1):</u>                                                                                                                                         |
|          | 1 = Inpu                       | t data sampled a                        | at end of data output time                                                                                                                         |
|          | 0 = Inpu<br>Slave mo           | t data sampled a $de (MSTEN = 0$        | at mode of data output time                                                                                                                        |
|          | SMP value                      | ue is ignored wh                        | en SPI is used in Slave mode. The module always uses SMP = 0.                                                                                      |
| bit 8    | CKE: SF                        | PI Clock Edge Se                        | elect bit <sup>(3)</sup>                                                                                                                           |
|          | 1 = Seria                      | al output data ch                       | anges on transition from active clock state to Idle clock state (see CKP bit)                                                                      |
|          | 0 = Seri                       | al output data ch                       | anges on transition from Idle clock state to active clock state (see CKP bit)                                                                      |
| bit 7    | SSEN: S                        | lave Select Ena                         | ble (Slave mode) bit                                                                                                                               |
|          | $1 = \frac{SSX}{SSX}$          | pin used for Sla                        | ve mode                                                                                                                                            |
| hit 6    | 0 - 33X                        | pin not used for                        | slave mode, pin controlled by port function.                                                                                                       |
| DILO     | 1 = Idle                       | state for clock is                      | a high level: active state is a low level                                                                                                          |
|          | 0 = Idle                       | state for clock is                      | a low level; active state is a high level                                                                                                          |
| bit 5    | MSTEN:                         | Master Mode E                           | nable bit                                                                                                                                          |
|          | 1 = Mas                        | ter mode                                |                                                                                                                                                    |
|          | 0 = Slav                       | e mode                                  |                                                                                                                                                    |
|          | 4 \A <i>C</i>                  |                                         |                                                                                                                                                    |
| Note     |                                | sing the 1:1 PBC                        | LK divisor, the user software should not read or write the peripheral's SFRs in the roly following the instruction that clears the medule's ON bit |
|          | JIJULN<br>2. This hit?         |                                         | en when the ON hit = $0$                                                                                                                           |
| 4        | 2. 1115 UIL (<br>2. This bit i |                                         | En when the ON Dit = 0.<br>a Framed SDI mode. The user should program this bit to '0' for the Framed SDI                                           |
| •        | mode (F                        | RMEN = 1).                              | e riamed or rimode. The user should program this bit to 0 for the riamed SPI                                                                       |
|          | 4: When A                      | UDEN = 1. the S                         | PI module functions as if the CKP bit is equal to '1'. regardless of the actual value                                                              |
|          | of CKP.                        | _,                                      |                                                                                                                                                    |

## REGISTER 18-3: SPIxSTAT: SPI STATUS REGISTER (CONTINUED)

- bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
  - 1 = Transmit buffer, SPIxTXB is empty
    - 0 = Transmit buffer, SPIxTXB is not empty

Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.

Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

### bit 2 Unimplemented: Read as '0'

bit 1 SPITBF: SPI Transmit Buffer Full Status bit

1 = Transmit not yet started, SPITXB is full

0 = Transmit buffer is not full

### Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

### Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

### bit 0 SPIRBF: SPI Receive Buffer Full Status bit

1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

### Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

### Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

| Bit<br>Range | Bit<br>31/23/15/7       | Bit<br>30/22/14/6 | Bit<br>29/21/13/5  | Bit<br>28/20/12/4   | Bit<br>27/19/11/3   | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------------|-------------------|--------------------|---------------------|---------------------|-------------------|------------------|------------------|
| 31:24        | U-0                     | U-0               | U-0                | U-0                 | U-0                 | U-0               | U-0              | U-0              |
|              | —                       | —                 | —                  | —                   | —                   | —                 | —                |                  |
| 00.40        | U-0                     | U-0               | U-0                | U-0                 | U-0                 | U-0               | U-0              | U-0              |
| 23.10        | —                       | —                 | —                  | —                   | —                   | —                 | —                | —                |
| 15.0         | R/W-0                   | U-0               | R/W-0              | R/W-0               | R/W-0               | R/W-0             | R/W-0            | R/W-0            |
| 10.0         | ON <sup>(1)</sup>       | —                 | SIDL               | ADRMU               | JX<1:0>             | PMPTTL            | PTWREN           | PTRDEN           |
| 7:0          | R/W-0                   | R/W-0             | R/W-0              | R/W-0               | R/W-0               | U-0               | R/W-0            | R/W-0            |
|              | CSF<1:0> <sup>(2)</sup> |                   | ALP <sup>(2)</sup> | CS2P <sup>(2)</sup> | CS1P <sup>(2)</sup> | —                 | WRSP             | RDSP             |

### REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit<sup>(1)</sup>
  - 1 = PMP is enabled
  - 0 = PMP is disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
  - 1 = Discontinue module operation when device enters Idle mode
  - 0 = Continue module operation in Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
  - 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins
  - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
  - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
  - 00 = Address and data appear on separate pins
- bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit
  - 1 = PMP module uses TTL input buffers
  - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
  - 1 = PMWR/PMENB port is enabled
  - 0 = PMWR/PMENB port is disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
  - 1 = PMRD/PMWR port is enabled
  - 0 = PMRD/PMWR port is disabled
- bit 7-6 **CSF<1:0>:** Chip Select Function bits<sup>(2)</sup>
  - 11 = Reserved
  - 10 = PMCS1 and PMCS2 function as Chip Select
  - 01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
  - 00 = PMCS1 and PMCS2 function as address bits 14 and 15, respectively
- bit 5 ALP: Address Latch Polarity bit<sup>(2)</sup>
  - 1 = Active-high (PMALL and PMALH)
  - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
- bit 4 **CS2P:** Chip Select 0 Polarity bit<sup>(2)</sup>
  - 1 = Active-high (PMCS2)
  - $0 = \text{Active-low}(\overline{\text{PMCS2}})$
  - **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
    - 2: These bits have no effect when their corresponding pins are used as address lines.

## PIC32MX330/350/370/430/450/470

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6     | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3    | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |
|--------------|-------------------|-----------------------|-------------------|-------------------|----------------------|-------------------|------------------|------------------|--|--|
| 31:24        | U-0               | U-0                   | U-0               | U-0               | U-0                  | U-0               | U-0              | U-0              |  |  |
|              | —                 | —                     | —                 | —                 | —                    | —                 | _                | —                |  |  |
| 00.40        | U-0               | U-0                   | U-0               | U-0               | U-0                  | U-0               | U-0              | U-0              |  |  |
| 23.10        | —                 | —                     | —                 | —                 | —                    | —                 |                  | —                |  |  |
| 45.0         | R/W-0             | R/W-0                 | R/W-0             | R/W-0             | R/W-0                | R/W-0             | R/W-0            | R/W-0            |  |  |
| 10.0         | PTEN<1            | 15:14> <sup>(1)</sup> | PTEN<13:8>        |                   |                      |                   |                  |                  |  |  |
| 7:0          | R/W-0             | R/W-0                 | R/W-0             | R/W-0             | R/W-0                | R/W-0             | R/W-0            | R/W-0            |  |  |
|              |                   |                       |                   | PTEN<             | <1:0> <sup>(2)</sup> |                   |                  |                  |  |  |

### REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

## Legend:

| Legena.           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-14 **PTEN<15:14>:** PMCSx Address Port Enable bits
  - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1<sup>(1)</sup>
  - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits 1 = PMA<13:2> function as PMP address lines
  - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Address Port Enable bits
  - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL<sup>(2)</sup>
  - 0 = PMA1 and PMA0 pads function as port I/O
- Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
  - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

## 23.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- · Up to 1 Msps conversion speed
- · Up to 28 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold Amplifier (SHA)
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- · 16-word conversion result buffer
- · Selectable buffer fill modes
- · Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 23-1. The 10-bit ADC has up to 28 analog input pins, designated AN0-AN27. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.



4: This selection is only used with CTMU capacitive and time measurement.

NOTES:

## 26.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

FIGURE 26-1: CTMU BLOCK DIAGRAM

The CTMU module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- Integrated temperature sensing diode
- · Control of current source during auto-sampling
- Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 26-1.



| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | r-1               | r-1               | r-1               | r-1               | r-1               | r-1               | R/P              | R/P              |
| 31:24        | —                 | —                 | —                 | — — FWDTWINS      |                   |                   | NSZ<1:0>         |                  |
| 23:16        | R/P               | R/P               | r-1               | R/P               | R/P               | R/P               | R/P              | R/P              |
|              | FWDTEN            | WINDIS            | —                 |                   | WDTPS<4:0>        |                   |                  |                  |
| 45.0         | R/P               | R/P               | R/P               | R/P               | r-1               | R/P               | R/P              | R/P              |
| 15:8         | FCKSM<1:0>        |                   | FPBDIV<1:0>       |                   | —                 | OSCIOFNC          | POSCMOD<1:0>     |                  |
| 7:0          | R/P               | r-1               | R/P               | r-1               | r-1               | R/P               | R/P              | R/P              |
|              | IESO              | —                 | FSOSCEN           | —                 | —                 | F                 | NOSC<2:0>        |                  |

### REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

| Legend:           | r = Reserved bit | P = Programmable bit      |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

### bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

### bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

### bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

### bit 21 Reserved: Write '1'

### bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

| •                                                            |
|--------------------------------------------------------------|
| 10100 <b>= 1:1048576</b>                                     |
| 10011 <b>= 1:524288</b>                                      |
| 10010 <b>= 1:262144</b>                                      |
| 10001 <b>= 1:131072</b>                                      |
| 10000 <b>= 1:65536</b>                                       |
| 01111 = 1:32768                                              |
| 01110 = 1:16384                                              |
| 01101 = 1:8192                                               |
| 01100 <b>= 1:4096</b>                                        |
| 01011 <b>= 1:2048</b>                                        |
| 01010 = 1:1024                                               |
| 01001 <b>= 1:512</b>                                         |
| 01000 <b>= 1:256</b>                                         |
| 00111 <b>= 1:128</b>                                         |
| 00110 <b>= 1:64</b>                                          |
| 00101 <b>= 1:32</b>                                          |
| 00100 = 1:16                                                 |
| 00011 = 1:8                                                  |
| 00010 = 1:4                                                  |
| 00001 = 1:2                                                  |
| 00000 = 1:1                                                  |
| All other combinations not shown result in operation = 10100 |
|                                                              |

**Note 1:** Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 21.24        | R/P               | R/P               | R/P               | R/P               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 31.24        | FVBUSONIO         | FUSBIDIO          | IOL1WAY           | PMDL1WAY          | —                 | —                 | —                | —                |  |  |  |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | R/P               | R/P              | R/P              |  |  |  |
| 23.10        | —                 | _                 | —                 | —                 | —                 | FSRSSEL<2:0>      |                  |                  |  |  |  |
| 15.0         | R/P               | R/P               | R/P               | R/P               | R/P               | R/P               | R/P              | R/P              |  |  |  |
| 15.0         | USERID<15:8>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 7:0          | R/P               | R/P               | R/P               | R/P               | R/P               | R/P               | R/P              | R/P              |  |  |  |
| 7.0          | USERID<7:0>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |
|              |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |

### REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

| Legend:           | r = Reserved bit | P = Programmable bit                    |
|-------------------|------------------|-----------------------------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared x = Bit is unknown |

bit 31 **FVBUSONIO:** USB VBUS\_ON Selection bit 1 = VBUSON pin is controlled by the USB module

- 0 = VBUSON pin is controlled by the OSB module0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 IOL1WAY: Peripheral Pin Select Configuration bit
  - 1 = Allow only one reconfiguration
  - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
  - 1 = Allow only one reconfiguration
  - 0 = Allow multiple reconfigurations
- bit 27-19 Unimplemented: Read as '0'

### bit 18-16 FSRSSEL<2:0>: Shadow Register Set Priority Select bit

These bits assign an interrupt priority to a shadow register.

- 111 = Shadow register set used with interrupt priority 7
- 110 = Shadow register set used with interrupt priority 6
- 101 = Shadow register set used with interrupt priority 5
- 100 = Shadow register set used with interrupt priority 4
- O11 = Shadow register set used with interrupt priority 3
- 010 = Shadow register set used with interrupt priority 2
- 001 = Shadow register set used with interrupt priority 1
- 000 = Shadow register set used with interrupt priority 0
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

## 28.2 On-Chip Voltage Regulator

All PIC32MX330/350/370/430/450/470 devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX330/350/370/430/450/470 family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 28-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 31.1 "DC Characteristics"**.

| Note: | It is important that the low-ESR capacitor |
|-------|--------------------------------------------|
|       | is placed as close as possible to the VCAP |
|       | pin.                                       |

## 28.2.1 HIGH VOLTAGE DETECT (HVD)

The HVD module monitors the core voltage at the VCAP pin. If a voltage above the required level is detected on VCAP, the I/O pins are disabled and the device is held in Reset as long as the HVD condition persists. See parameter HV10 (VHVD) in Table 31-11 in **Section 31.1** "**DC Characteristics**" for more information.

## 28.2.2 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

## 28.2.3 ON-CHIP REGULATOR AND BOR

PIC32MX330/350/370/430/450/470 devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 31.1 "DC Characteristics"**.

## FIGURE 28-1: CONNECTIONS FOR THE ON-CHIP REGULATOR



## 28.3 Programming and Diagnostics

PIC32MX330/350/370/430/450/470 devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 28-2:

### BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS



## TABLE 31-21: INTERNAL LPRC ACCURACY

| AC CHA                          | ARACTERISTICS | $\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |         |      |       |            |  |  |  |  |
|---------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------|--|--|--|--|
| Param.<br>No. Characteristics   |               | Min.                                                                                                                                                                                                                                                                                                                                                    | Typical | Max. | Units | Conditions |  |  |  |  |
| LPRC @ 31.25 kHz <sup>(1)</sup> |               |                                                                                                                                                                                                                                                                                                                                                         |         |      |       |            |  |  |  |  |
| F21                             | LPRC          | -15                                                                                                                                                                                                                                                                                                                                                     | _       | +15  | %     | —          |  |  |  |  |

Note 1: Change of LPRC frequency as VDD changes.

## FIGURE 31-3: I/O TIMING CHARACTERISTICS



### TABLE 31-22: I/O TIMING REQUIREMENTS

| AC CHAI                                             | RACTERIS | STICS                 | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |      |                        |      |            |            |
|-----------------------------------------------------|----------|-----------------------|------------------------------------------------------|------|------------------------|------|------------|------------|
| Param.<br>No. Symbol Characteristics <sup>(2)</sup> |          |                       | stics <sup>(2)</sup>                                 | Min. | Typical <sup>(1)</sup> | Max. | Units      | Conditions |
| DO31                                                | TioR     | Port Output Rise Time |                                                      | _    | 5                      | 15   | ns         | Vdd < 2.5V |
|                                                     |          |                       |                                                      | _    | 5                      | 10   | ns         | Vdd > 2.5V |
| DO32 TIOF Port Output Fall Tim                      |          | е                     | —                                                    | 5    | 15                     | ns   | Vdd < 2.5V |            |
|                                                     |          |                       |                                                      | —    | 5                      | 10   | ns         | VDD > 2.5V |
| DI35 TINP INTx Pin High or Low Tin                  |          |                       | w Time                                               | 10   | _                      | _    | ns         |            |
| DI40 TRBP CNx High or Low Tin                       |          |                       | me (input)                                           | 2    | _                      | _    | TSYSCLK    | _          |

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

| AC CHA        | RACTERIS |                            | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |      |       |            |                            |
|---------------|----------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------|----------------------------|
| Param.<br>No. | Symbol   | Charact                    | Min.                                                                                                                                                                                                                                                                                                                                               | Max. | Units | Conditions |                            |
| IS34          | THD:STO  | Stop Condition             | 100 kHz mode                                                                                                                                                                                                                                                                                                                                       | 4000 | —     | ns         | _                          |
|               |          | Hold Time                  | 400 kHz mode                                                                                                                                                                                                                                                                                                                                       | 600  |       | ns         |                            |
|               |          |                            | 1 MHz mode<br><b>(Note 1)</b>                                                                                                                                                                                                                                                                                                                      | 250  |       | ns         |                            |
| IS40          | TAA:SCL  | Output Valid from<br>Clock | 100 kHz mode                                                                                                                                                                                                                                                                                                                                       | 0    | 3500  | ns         | —                          |
|               |          |                            | 400 kHz mode                                                                                                                                                                                                                                                                                                                                       | 0    | 1000  | ns         |                            |
|               |          |                            | 1 MHz mode<br><b>(Note 1)</b>                                                                                                                                                                                                                                                                                                                      | 0    | 350   | ns         |                            |
| IS45          | Tbf:sda  | SDA Bus Free Time          | 100 kHz mode                                                                                                                                                                                                                                                                                                                                       | 4.7  | —     | μs         | The amount of time the bus |
|               |          |                            | 400 kHz mode                                                                                                                                                                                                                                                                                                                                       | 1.3  | —     | μS         | must be free before a new  |
|               |          |                            | 1 MHz mode<br>(Note 1)                                                                                                                                                                                                                                                                                                                             | 0.5  | _     | μS         | transmission can start     |
| IS50          | Св       | Bus Capacitive Lo          | ading                                                                                                                                                                                                                                                                                                                                              |      | 400   | pF         | —                          |

## TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

**Note 1:** Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).