Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |---------------------------|---| | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | peed | 80MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG | | eripherals | Brown-out Detect/Reset, DMA, POR, PWM, WDT | | lumber of I/O | 81 | | rogram Memory Size | 64KB (64K x 8) | | rogram Memory Type | FLASH | | EPROM Size | - | | AM Size | 16K x 8 | | oltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | ata Converters | A/D 28x10b | | scillator Type | Internal | | perating Temperature | -40°C ~ 85°C (TA) | | lounting Type | Surface Mount | | ackage / Case | 100-TQFP | | upplier Device Package | 100-TQFP (12x12) | | urchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx430f064lt-i-pt | #### TABLE 4: PIN NAMES FOR 100-PIN DEVICES (CONTINUED) **100-PIN TQFP (TOP VIEW)**(1,2,3) PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L 100 1 | Pin# | Full Pin Name | |------|-----------------------| | 71 | RPD11/PMCS1/RD11 | | 72 | RPD0/RD0 | | 73 | SOSCI/RPC13/RC13 | | 74 | SOSCO/RPC14/T1CK/RC14 | | 75 | Vss | | 76 | AN24/RPD1/RD1 | | 77 | AN25/RPD2/RD2 | | 78 | AN26/RPD3/RD3 | | 79 | RPD12/PMD12/RD12 | | 80 | PMD13/RD13 | | 81 | RPD4/PMWR/RD4 | | 82 | RPD5/PMRD/RD5 | | 83 | PMD14/RD6 | | 84 | PMD15/RD7 | | 85 | VCAP | | Pin# | Full Pin Name | |------|---------------------| | 86 | VDD | | 87 | RPF0/PMD11/RF0 | | 88 | RPF1/PMD10/RF1 | | 89 | RPG1/PMD9/RG1 | | 90 | RPG0/PMD8/RG0 | | 91 | TRCLK/RA6 | | 92 | TRD3/CTED8/RA7 | | 93 | PMD0/RE0 | | 94 | PMD1/RE1 | | 95 | TRD2/RG14 | | 96 | TRD1/RG12 | | 97 | TRD0/RG13 | | 98 | AN20/PMD2/RE2 | | 99 | RPE3/CTPLS/PMD3/RE3 | | 100 | AN21/PMD4/RE4 | #### Note - 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions. - 2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information. - 3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions. #### **Table of Contents** | 1.0 | Device Overview | 17 | |------|--|-----| | 2.0 | Guidelines for Getting Started with 32-bit MCUs | | | 3.0 | CPU. | | | 4.0 | Memory Organization | | | 5.0 | Flash Program Memory | | | 6.0 | Resets | | | 7.0 | Interrupt Controller | | | 8.0 | Oscillator Configuration | | | 9.0 | Prefetch Cache | | | 10.0 | Direct Memory Access (DMA) Controller | | | 11.0 | USB On-The-Go (OTG) | 113 | | | I/O Ports | | | 13.0 | Timer1 | 167 | | 14.0 | Timer2/3, Timer4/5 | 171 | | | Watchdog Timer (WDT) | | | | Input Capture | | | 17.0 | Output Compare | 185 | | 18.0 | Serial Peripheral Interface (SPI) | 189 | | 19.0 | Inter-Integrated Circuit (I ² C) | 197 | | 20.0 | Universal Asynchronous Receiver Transmitter (UART) | 205 | | 21.0 | Parallel Master Port (PMP) | 213 | | 22.0 | Real-Time Clock and Calendar (RTCC) | 223 | | 23.0 | 10-bit Analog-to-Digital Converter (ADC) | 233 | | | Comparator | | | 25.0 | Comparator Voltage Reference (CVREF) | 247 | | 26.0 | Charge Time Measurement Unit (CTMU) | 251 | | 27.0 | Power-Saving Features | 257 | | 28.0 | Special Features | 261 | | | Instruction Set | | | 30.0 | Development Support | 275 | | | Electrical Characteristics | | | | DC and AC Device Characteristics Graphs | | | | Packaging Information | | | | Microchip Web Site | | | | omer Change Notification Service | | | Cust | omer Support | 359 | | Prod | uct Identification System | 360 | ## 2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION The following example assumptions are used to calculate the Primary Oscillator loading capacitor values: - CIN = PIC32 OSC2 Pin Capacitance = ~4-5 pF - COUT = PIC32 OSC1 Pin Capacitance = ~4-5 pF - C1 and C2 = XTAL manufacturing recommended loading capacitance - Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF ## EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION ``` Crystal manufacturer recommended: C1 = C2 = 15 \ pF Therefore: CLOAD = \{([CIN + CI] * [COUT + C2]) / [CIN + CI + C2 + COUT]\} + estimated oscillator PCB stray capacitance = \{([5 + 15][5 + 15]) / [5 + 15 + 15 + 5]\} + 2.5 \ pF = \{([20][20]) / [40]\} + 2.5 = 10 + 2.5 = 12.5 \ pF Rounded to the nearest standard value or 13 pF in this example for Primary Oscillator crystals "C1" and "C2". ``` The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal): - Select a crystal with a lower "minimum" power drive rating - Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating. - Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M - C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain. - C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance. Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels. #### 2.8.1.1 Additional Microchip References - AN588 "PICmicro[®] Microcontroller Oscillator Design Guide" - AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro® Devices" - AN849 "Basic PICmicro® Oscillator Design" # FIGURE 2-4: PRIMARY CRYSTAL OSCILLATOR CIRCUIT RECOMMENDATIONS #### 3.0 CPU Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at http://www.imgtec.com. The the MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX330/350/370/430/450/470 device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations. #### 3.1 Features - · 5-stage pipeline - · 32-bit address and data paths - MIPS32® Enhanced Architecture (Release 2): - Multiply-accumulate and multiply-subtract instructions - Targeted multiply instruction - Zero/One detect instructions - WAIT instruction - Conditional move instructions (MOVN, MOVZ) - Vectored interrupts - Programmable exception vector base - Atomic interrupt enable/disable - GPR shadow registers to minimize latency for interrupt handlers - Bit field manipulation instructions - MIPS16e[®] Code Compression: - 16-bit encoding of 32-bit instructions to improve code density - Special PC-relative instructions for efficient loading of addresses and constants - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines - Improved support for handling 8 and 16-bit data types - Simple Fixed Mapping Translation (FMT) Mechanism: - · Simple Dual Bus Interface: - Independent 32-bit address and data buses - Transactions can be aborted to improve interrupt latency - Autonomous Multiply/Divide Unit (MDU): - Maximum issue rate of one 32x16 multiply per clock - Maximum issue rate of one 32x32 multiply every other clock - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (rs) sign extension-dependent) - · Power Control: - Minimum frequency: 0 MHz - Low-Power mode (triggered by WAIT instruction) - Extensive use of local gated clocks - · EJTAG Debug and Instruction Trace: - Support for single stepping - Virtual instruction and data address/value - Breakpoints FIGURE 3-1: MIPS32® M4K® PROCESSOR CORE BLOCK DIAGRAM #### 7.0 INTERRUPT CONTROLLER Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8. "Interrupt Controller"** (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). PIC32MX330/350/370/430/450/470 devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU. The PIC32MX330/350/370/430/450/470 interrupt module includes the following features: - · Up to 76 interrupt sources - · Up to 46 interrupt vectors - · Single and multi-vector mode operations - · Five external interrupts with edge polarity control - · Interrupt proximity timer - Seven user-selectable priority levels for each vector - Four user-selectable subpriority levels within each priority - Dedicated shadow set configurable for any priority level (see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in 28.0 "Special Features" for more information) - · Software can generate any interrupt - User-configurable interrupt vector table location - · User-configurable interrupt vector spacing FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM #### REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | |--------------|-------------------|-------------------|-------------------|-------------------------|-------------------|---------------------------|------------------|------------------|--| | 31:24 | U-0 | | 31.24 | - | _ | - | _ | _ | - | _ | _ | | | 22.46 | U-0 | | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | | 45.0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | | 15:8 | _ | _ | _ | _ | _ | SRIPL<2:0> ⁽¹⁾ | | | | | 7:0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | | 7:0 | _ | _ | | VEC<5:0> ⁽¹⁾ | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-11 Unimplemented: Read as '0' bit 10-8 SRIPL<2:0>: Requested Priority Level bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU bit 7-6 **Unimplemented:** Read as '0' bit 5-0 **VEC<5:0>:** Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode. #### REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 24.24 | R/W-0 | | | 31:24 | IPTMR<31:24> | | | | | | | | | | | 00.40 | R/W-0 | | | 23:16 | IPTMR<23:16> | | | | | | | | | | | 45.0 | R/W-0 | | | 15:8 | IPTMR<15:8> | | | | | | | | | | | 7.0 | R/W-0 | | | 7:0 | | | | IPTM | R<7:0> | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event. REGISTER 9-6: CHEW1: CACHE WORD 1 | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 31:24 | R/W-x | | | 31.24 | | | | CHEW1< | :31:24> | | | | | | | 22:46 | R/W-x | | | 23:16 | CHEW1<23:16> | | | | | | | | | | | 15.0 | R/W-x | | | 15:8 | CHEW1<15:8> | | | | | | | | | | | 7.0 | R/W-x | | | 7:0 | | | | CHEW1 | <7:0> | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected. #### REGISTER 9-7: CHEW2: CACHE WORD 2 | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 24.24 | R/W-x | | | 31:24 | | | | CHEW2< | :31:24> | | | | | | | 22:46 | R/W-x | | | 23:16 | CHEW2<23:16> | | | | | | | | | | | 15.0 | R/W-x | | | 15:8 | CHEW2<15:8> | | | | | | | | | | | 7.0 | R/W-x | | | 7:0 | | | | CHEW2 | <7:0> | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected. #### REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 31:24 | R/W-0 | | | 31.24 | | | | DCRCDATA | A<31:24> | | | | | | | 22:46 | R/W-0 | | | 23:16 | DCRCDATA<23:16> | | | | | | | | | | | 45.0 | R/W-0 | | | 15:8 | DCRCDATA<15:8> | | | | | | | | | | | 7:0 | R/W-0 | | | 7:0 | | | | DCRCDA | ΓA<7:0> | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### bit 31-0 DCRCDATA<31:0>: CRC Data Register bits Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read. When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value). When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read. #### REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 31:24 | R/W-0 | | | 31.24 | | | | DCRCXOR | <31:24> | | | | | | | 23:16 | R/W-0 | | | 23.10 | DCRCXOR<23:16> | | | | | | | | | | | 45.0 | R/W-0 | | | 15:8 | DCRCXOR<15:8> | | | | | | | | | | | 7.0 | R/W-0 | | | 7:0 | | | | DCRCXO | R<7:0> | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): This register is unused. When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): - 1 = Enable the XOR input to the Shift register - 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register #### REGISTER 10-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 31:24 | U-0 | | | 31.24 | _ | _ | _ | _ | | _ | _ | _ | | | | 22:46 | R/W-1 | | | 23:16 | CHAIRQ<7:0> ⁽¹⁾ | | | | | | | | | | | 15:8 | R/W-1 | | | 15.6 | CHSIRQ<7:0> ⁽¹⁾ | | | | | | | | | | | 7:0 | S-0 | S-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | | | | 7.0 | CFORCE | CABORT | PATEN | SIRQEN | AIRQEN | _ | _ | _ | | | Legend:S = Settable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown bit 31-24 Unimplemented: Read as '0' bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits(1) 11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag • • 00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits(1) 11111111 = Interrupt 255 will initiate a DMA transfer • • 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer bit 7 CFORCE: DMA Forced Transfer bit 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0' bit 6 CABORT: DMA Abort Transfer bit 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0' bit 5 PATEN: Channel Pattern Match Abort Enable bit 1 = Abort transfer and clear CHEN on pattern match 0 = Pattern match is disabled bit 4 SIRQEN: Channel Start IRQ Enable bit 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer bit 3 AIRQEN: Channel Abort IRQ Enable bit 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer bit 2-0 Unimplemented: Read as '0' Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources. #### REGISTER 10-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 31:24 | U-0 | | | 31.24 | _ | _ | _ | _ | _ | _ | _ | _ | | | | 22:46 | U-0 | | | 23:16 | | _ | _ | _ | _ | _ | _ | _ | | | | 45.0 | R/W-0 | | | 15:8 | CHSSIZ<15:8> | | | | | | | | | | | 7:0 | R/W-0 | | | 7:0 | | | | CHSSIZ | <7:0> | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15-0 CHSSIZ<15:0>: Channel Source Size bits 1111111111111111 = 65,535 byte source size • : 00000000000000010 = 2 byte source size 00000000000000001 = 1 byte source size 0000000000000000 = 65,536 byte source size #### REGISTER 10-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | 00.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | 15:8 | | | | CHDSIZ | <15:8> | | | | | 7:0 | R/W-0 | 7:0 | | | | CHDSIZ | <7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits 111111111111111 = 65,535 byte destination size • 00000000000000010 = 2 byte destination size 0000000000000001 = 1 byte destination size 0000000000000000 = 65,536 byte destination size | IAB | LE 11-1: | USE | REGISTER MAP | (CONTINUED | |-----|----------|-----|--------------|------------| | | | | | | | ess | | | | | | | | | | | Bit | ts | | | | | | | | |-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|----------------|----------|-------|----------|---------|--------|-----------|----------|------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 5280 | U1FRML ⁽³⁾ | 31:16 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3260 | OTFRIVIL' | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | | | FRML< | 7:0> | | | | 0000 | | 5290 | U1FRMH ⁽³⁾ | 31:16 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3290 | OTI KWITY 7 | 15:0 | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | FRMH<2:0> | • | 0000 | | 52A0 | U1TOK | 31:16 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 32A0 | OTTOR | 15:0 | | _ | _ | _ | _ | _ | _ | _ | | PID | <3:0> | | | EP | <3:0> | • | 0000 | | 52B0 | U1SOF | 31:16 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 52B0 | 0150F | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | | | CNT<7 | 7:0> | | | | 0000 | | 52C0 | U1BDTP2 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 5200 | UIBDIP2 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | | | BDTPTRH- | <23:16> | | | | 0000 | | E2D0 | U1BDTP3 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 52D0 | UIBDIPS | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | BDTPTRU<31:24> | | | | | | | 0000 | | | F2F0 | U1CNFG1 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 52E0 | UTCNFGT | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | UTEYE | UOEMON | | USBSIDL | _ | _ | _ | UASUSPND | 0000 | | 5300 | U1EP0 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 5300 | UTEPU | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | LSPD | RETRYDIS | | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 5310 | U1EP1 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 5310 | UTEPT | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 5320 | U1EP2 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 5320 | UTEPZ | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 5330 | U1EP3 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 5330 | UIEPS | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 5340 | U1EP4 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3340 | UIEF4 | 15:0 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | F2F0 | LIAEDE | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 5350 | U1EP5 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | F260 | U1EP6 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 5360 | UIEPO | 15:0 | I | _ | _ | _ | _ | _ | _ | _ | | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 5370 | U1EP7 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5370 | UIEPI | 15:0 | I | _ | _ | _ | _ | _ | _ | _ | | | | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 5380 | U1EP8 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 0000 | | 3360 | UIEPO | 15:0 | I | _ | _ | _ | _ | _ | _ | _ | | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. ^{2:} This register does not have associated SET and INV registers. ^{3:} This register does not have associated CLR, SET and INV registers. ^{4:} Reset value for this bit is undefined. #### REGISTER 11-3: U10TGSTAT: USB OTG STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | - | - | - | - | - | _ | - | _ | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | U-0 | 15.6 | - | - | - | - | - | _ | - | _ | | 7.0 | R-0 | U-0 | R-0 | U-0 | R-0 | R-0 | U-0 | R-0 | | 7:0 | ID | _ | LSTATE | _ | SESVD | SESEND | _ | VBUSVD | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7 ID: ID Pin State Indicator bit 1 = No cable is attached or a Type-B cable has been plugged into the USB receptacle 0 = A Type-A cable has been plugged into the USB receptacle bit 6 Unimplemented: Read as '0' bit 5 LSTATE: Line State Stable Indicator bit 1 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms 0 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms bit 4 Unimplemented: Read as '0' bit 3 SESVD: Session Valid Indicator bit 1 = VBUS voltage is above Session Valid on the A or B device 0 = VBUS voltage is below Session Valid on the A or B device bit 2 SESEND: B-Device Session End Indicator bit 1 = VBUS voltage is below Session Valid on the B device 0 = VBUS voltage is above Session Valid on the B device bit 1 **Unimplemented:** Read as '0' bit 0 VBUSVD: A-Device VBUS Valid Indicator bit 1 = VBUS voltage is above Session Valid on the A device 0 = VBUS voltage is below Session Valid on the A device #### REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | - | - | _ | | 1 | _ | | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | U-0 | 15.6 | _ | _ | _ | _ | _ | _ | _ | _ | | 7:0 | R-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | | 7:0 | UACTPND | _ | _ | USLPGRD | USBBUSY ⁽¹⁾ | _ | USUSPEND | USBPWR | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7 **UACTPND:** USB Activity Pending bit 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet 0 = An interrupt is not pending bit 6-5 **Unimplemented:** Read as '0' bit 4 USLPGRD: USB Sleep Entry Guard bit 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending 0 = USB module does not block Sleep entry bit 3 **USBBUSY:** USB Module Busy bit⁽¹⁾ 1 = USB module is active or disabled, but not ready to be enabled 0 = USB module is not active and is ready to be enabled **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results. bit 2 Unimplemented: Read as '0' bit 1 USUSPEND: USB Suspend Mode bit 1 = USB module is placed in Suspend mode (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.) 0 = USB module operates normally bit 0 USBPWR: USB Operation Enable bit 1 = USB module is turned on 0 = USB module is disabled (Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.) ## 19.1 **Control Registers** | TABLE 19-1: | 12C1 | AND | 12C2 | REGISTER | MAP | |-------------|------|-----|-------------|----------|-----| |-------------|------|-----|-------------|----------|-----| | ess | | • | | | | | | | | Bi | its | | | | | | | | | |-----------------------------|---------------------------------|---------------|--------------|-------------|-----------|-------------|-------------|-----------|-------------|------------|--------------------------------|------------------|-------------------|-------------------|---------------|----------|-----------|----------|--------------| | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 5000 | I2C1CON | 31:16
15:0 | ON | _ | -
SIDL | —
SCLREL | —
STRICT | —
A10M | —
DISSLW | —
SMEN | —
GCEN | —
STREN | —
ACKDT | —
ACKEN | - RCEN | —
PEN | -
RSEN | —
SEN | 0000
BFFF | | 5010 | I2C1STAT | 31:16 | —
ACKSTAT | —
TRSTAT | _ | _ | _ | —
BCL | —
GCSTAT | —
ADD10 | —
IWCOL | —
I2COV | —
D А | —
Р | |
R_W | —
RBF | —
TBF | 0000 | | 5020 | I2C1ADD | 31:16
15:0 | _ | _ | _ | _ | _ | _ | _ | — | | — | _ | _ | _ | _ | — | _ | 0000 | | 5030 | I2C1MSK | 31:16 | _ | _ | _ | | _ | _ | _ | _ | _ | _ | Address
— | _ | _ | _ | _ | _ | 0000 | | 5040 | I2C1BRG | 15:0
31:16 | _
_ | _
_ | | | | _ | _ | _ | _ | _ | _ | isk Register
— | _ | _ | _ | _ | 0000 | | | | 15:0
31:16 | _ | _ | | _ | _ | _ | _ | _ | Baud Rate Generator Register - | | | | | _ | 0000 | | | | 5050 | I2C1TRN | 15:0 | _ | _ | | _ | _ | _ | _ | _ | | | | Transmit | Register | | 1 | | 0000 | | 5060 | I2C1RCV | 31:16
15:0 | _ | _ | | | | _ | _ | | _ | _ | _ | Receive | —
Register | _ | _ | _ | 0000 | | 5100 | I2C2CON | 31:16
15:0 | —
ON | _ | —
SIDL | —
SCLREL | —
STRICT | —
A10M | —
DISSLW | —
SMEN | —
GCEN | —
STREN | —
ACKDT | —
ACKEN | —
RCEN | —
PEN | —
RSEN | —
SEN | 0000
BFFF | | 5110 | I2C2STAT | 31:16 | _ | _ | — | — | — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | | 15:0
31:16 | ACKSTAT — | TRSTAT — | | _ | | BCL
— | GCSTAT — | ADD10 | IWCOL | I2COV | D_A
— | P
— | s
 | R_W
— | RBF
— | TBF
— | 0000 | | 5120 | I2C2ADD | 15:0
31:16 | _ | _ | | | | _ | _ | _ | _ | _ | Address | Register | _ | _ | _ | _ | 0000 | | 5130 | I2C2MSK | 15:0 | _ | _ | _ | _ | _ | _ | | | | | Address Ma | sk Registe | | | | | 0000 | | 5140 | I2C2BRG | 31:16
15:0 | _ | _ | | _ | _ | _ | _ | _ | —
Bau | —
Id Rate Ger | —
ierator Regi | —
ister | _ | _ | _ | _ | 0000 | | 5150 | I2C2TRN | 31:16
15:0 | _ | _ | | | | _ | _ | _ | | | | | 0000 | | | | | | 5160 | I2C2RCV | 31:16
15:0 | _ | _ | | _ | _ | _ | | | _ | _ | _ | — Receive | _ | _ | _ | _ | 0000 | PIC32MX330/350/370/430/450/470 Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See **Section 12.2 "CLR, SET, and INV Registers"** for more information. Note 1: #### REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED) bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits(3) 11111111 = Alarm will trigger 256 times • 00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1. - Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0. - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1. - 3: This assumes a CPU read will execute in less than 32 PBCLKs. **Note:** This register is reset only on a Power-on Reset (POR). ## 25.0 COMPARATOR VOLTAGE REFERENCE (CVREF) Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 20.** "Comparator Voltage Reference (CVREF)" (DS60001109), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output. The CVREF module has the following features: - · High and low range selection - · Sixteen output levels available for each range - Internally connected to comparators to conserve device pins - · Output can be connected to a pin FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|------------------------|------------------| | 31:24 | R/W-0 | 31.24 | EDG1MOD | EDG1POL | | EDG1S | EL<3:0> | | EDG2STAT | EDG1STAT | | 23:16 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | | 23.10 | EDG2MOD | EDG2POL | | EDG2S | EL<3:0> | | _ | _ | | 15:0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | ON | _ | CTMUSIDL | TGEN ⁽¹⁾ | EDGEN | EDGSEQEN | IDISSEN ⁽²⁾ | CTTRIG | | 7:0 | R/W-0 | 7:0 | | | ITRIM | 1<5:0> | | | IRNG | <1:0> | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31 **EDG1MOD:** Edge 1 Edge Sampling Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive bit 30 EDG1POL: Edge 1 Polarity Select bit 1 = Edge 1 programmed for a positive edge response 0 = Edge 1 programmed for a negative edge response bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits 1111 = Reserved 1110 = C2OUT pin is selected 1101 = C1OUT pin is selected 1100 = IC3 Capture Event is selected 1011 = IC2 Capture Event is selected 1010 = IC1 Capture Event is selected 1001 = CTED8 pin is selected 1000 = CTED7 pin is selected 0111 = CTED6 pin is selected 0110 = CTED5 pin is selected 0101 = CTED4 pin is selected 0100 = CTED3 pin is selected 0011 = CTED1 pin is selected 0010 = CTED2 pin is selected 0001 = OC1 Compare Event is selected 0000 = Timer1 Event is selected bit 25 **EDG2STAT:** Edge 2 Status bit Indicates the status of Edge 2 and can be written to control edge source 1 = Edge 2 has occurred 0 = Edge 2 has not occurred - **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT. - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array. - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in **Section 31.0** "Electrical Characteristics" for current values. - **4:** This bit setting is not available for the CTMU temperature diode. TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS (CONTINUED) | AC CHA | RACTERIS | TICS | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp | | | | | | |---------------|----------------------|--------------------------------|---|---------------------|------|-------|------------|--| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. | Typ. ⁽²⁾ | Max. | Units | Conditions | | | SP52 | TscH2ssH
TscL2ssH | SSx after SCKx Edge | Tsck + 20 | _ | _ | ns | _ | | - Note 1: These parameters are characterized, but not tested in manufacturing. - **2:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - **3:** The minimum clock period for SCKx is 40 ns. - 4: Assumes 50 pF load on all SPIx pins. 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | | |----------------------------|--------|-------------|----------|------|--| | Dimension | Limits | MIN | NOM | MAX | | | Contact Pitch | E | | 0.50 BSC | | | | Optional Center Pad Width | W2 | | | 5.50 | | | Optional Center Pad Length | T2 | | | 5.50 | | | Contact Pad Spacing | C1 | | 8.90 | | | | Contact Pad Spacing | C2 | | 8.90 | | | | Contact Pad Width (X64) | X1 | | | 0.30 | | | Contact Pad Length (X64) | Y1 | | | 0.85 | | | Distance Between Pads | G | 0.20 | | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2154A ## 64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | N | IILLIMETER | S | | | |-------------------------------------|--------|------|-------------------|------|--|--| | Dimension | Limits | MIN | NOM | MAX | | | | Number of Terminals | N | | 64 | | | | | Pitch | е | | 0.50 BSC | | | | | Overall Height | Α | 0.80 | 0.85 | 0.90 | | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | | Standoff | A3 | | 0.20 REF | | | | | Overall Width | Е | | 9.00 BSC | | | | | Exposed Pad Width | E2 | 4.60 | 4.70 | 4.80 | | | | Overall Length | D | | 9.00 BSC | | | | | Exposed Pad Length | D2 | 4.60 | 4.70 | 4.80 | | | | Terminal Width | b | 0.15 | 0.20 | 0.25 | | | | Terminal Length | L | 0.30 | 0.40 | 0.50 | | | | Terminal-to-Exposed-Pad K 1.755 REF | | | | | | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M $\,$ BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-260A Sheet 2 of 2