

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

••**><** F

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx430f064lt-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). This document contains device-specific information for PIC32MX330/350/370/430/450/470 devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX330/350/ 370/430/450/470 family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX330/350/370/430/450/470 BLOCK DIAGRAM

4.2 Bus Matrix Registers

TABLE 4-2: BUS MATRIX REGISTER MAP

ess'		Ð										Bits							
Virtual Addi (BF88_#	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	—	_	_	_	BMXCHEDMA	—	_	—	_	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000	BIMACON	15:0	—	_	_	_	_	_	_	-	_	BMXWSDRM		_	—	В	MXARB<2:0>		0047
2010		31:16	—	_	_	_	_	_	_	_	—	_	_	_	_		—	—	0000
2010	DIVIADA /	15:0									BM	XDKPBA<15:0>							0000
2020		31:16	—	_	—	—		—			-	—		—	—		—	—	0000
2020	BIVIADODBA	15:0									BM	XDUDBA<15:0>							0000
2030	(1) גפסו וחעאפ	31:16	—	_	_	_	_	—	_	-	_	—		—	-		—	_	0000
2030	DIVINDOF DA	15:0									BM	XDUPBA<15:0>							0000
2040	BMYDRMS7	31:16									BM	YDPM97<31.05							xxxx
2040	DIVIDUTIVIOZ	15:0		-	_	_		-			DIVI.	XD1102 31.02		_	-				xxxx
2050		31:16	_		—	—	_		_	_	_	—	_	—		BMXPUPBA	<19:16>		0000
2000		15:0									BM	XPUPBA<15:0>							0000
2060	BMYDEMS7	31:16									BM	XPEM97-31.05							xxxx
2000		15:0									Divi	Xi T MOZ 31.02							xxxx
2070	BMXBOOTS7	31:16									BM	(BOOTS7<31.0)							0000
2010	DIVINDOUTION	15:0									לואום								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset pin
- · SWR: Software Reset
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

6.1 Reset Control Registers

TABLE 6-1: SYSTEM CONTROL REGISTER MAP

ess				Bits														ú	
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
E600	BCON	31:16	—	—	HVDR	—	—	—	—	—	_	_	—	—	—	—	—	—	0000
FOUU	RCON	15:0	_	—	—	_	_	_	CMR	VREGS	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR	xxxx ⁽²⁾
E610	DOMIDET	31:16	_	—	—	_	_	_	_	_	—	_	—	_	—	_	_	—	0000
FUIU	ROWROI	15:0	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess										Bits									
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_		_	_	_	—	_	_	_	—	_	—	—	—	_		0000
0210	INIOC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1		xxxx
6220	PORTC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0220	TORIC	15:0	RC15	RC14	RC13	RC12	_	—	_	_	_	_	_	RC4	RC3	RC2	RC1		xxxx
6230		31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0230	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	—	_	_	_	—	_	LATC4	LATC3	LATC2	LATC1		xxxx
6240	ODCC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0240	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	—	_	_	_	_	_	ODCC4	ODCC3	ODCC2	ODCC1		xxxx
6250	CNPUC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0230		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	—	_	_	_	_	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1		xxxx
6260	CNPDC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	—	_	_	_	_	_	CNPDC4	CNPDC3	CNPDC2	CNPDC1		xxxx
6270	CNCONC	31:16	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—		0000
0270	CINCOINC	15:0	ON	_	SIDL	_	_	—	_	_	_	_	_	_	—	—	—		0000
6280	CNENC	31:16	_	—		_	_	—	_	_	_	_	_	_	—	—	—		0000
0200	ONLINO	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12		—				—	_	CNIEC4	CNIEC3	CNIEC2	CNIEC1		xxxx
6290	CNSTATC	31:16	_	—		_	_	—	_	_	_	—	_	—	—	—	—		0000
0290	SNOTATO	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_	_	—	_	_	_	_	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	—	xxxx

TABLE 12-5: PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit
 - When TCS = 1:1 = External clock input is synchronized0 = External clock input is not synchronizedWhen TCS = 0:This bit is ignored.
- bit 1 **TCS:** Timer Clock Source Select bit 1 = External clock from TxCKI pin 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- · Synchronous external 16-bit timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- · Synchronous internal 32-bit timer
- · Synchronous internal 32-bit gated timer
- · Synchronous external 32-bit timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 in 16-bit mode, Timer2/ 3 in 32-bit mode)
- Fast bit manipulation using CLR, SET, and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

REGISTER 18-2:	SPIxCON2: SPI CONTROL REGISTER 2
----------------	----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7.0	AUDEN ⁽¹⁾	_	_	—	AUDMONO ^(1,2)	_	AUDMOD)<1:0> ^(1,2)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extened
- bit 14-13 Unimplemented: Read as '0'
- bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit
 - 1 = Frame Error overflow generates error events
 - 0 = Frame Error does not generate error events
- bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
 - 1 = Receive overflow generates error events
 - 0 = Receive overflow does not generate error events
- bit 10 **SPITUREN:** Enable Interrupt Events via SPITUR bit
 - 1 = Transmit Underrun Generates Error Events
 - 0 = Transmit Underrun Does Not Generates Error Events
- bit 9 **IGNROV:** Ignore Receive Overflow bit (for Audio Data Transmissions)
 - 1 = A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data
 - 0 = A ROV is a critical error which stop SPI operation
- bit 8 **IGNTUR:** Ignore Transmit Underrun bit (for Audio Data Transmissions)
 - 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
 - 0 = A TUR is a critical error which stop SPI operation
- bit 7 AUDEN: Enable Audio CODEC Support bit⁽¹⁾
 - 1 = Audio protocol is enabled
 - 0 = Audio protocol is disabled
- bit 6-5 Unimplemented: Read as '0'
- bit 3 AUDMONO: Transmit Audio Data Format bit^(1,2)
 - 1 = Audio data is mono (Each data word is transmitted on both left and right channels)
- 0 = Audio data is stereobit 2 Unimplemented: Read as '0'
- bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit^(1,2)
 - 11 = PCM/DSP mode
 - 10 = Right Justified mode
 - 01 = Left Justified mode
 - $00 = I^2 S \mod I$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/ pic32). The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard. Figure 19-1 illustrates the I^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

PIC32MX330/350/370/430/450/470

FIGURE 19-1: I²C BLOCK DIAGRAM

NOTES:

25.1 Control Register

TABLE 25-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess										Bits									ú
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	_	_	-	—	-	_	_	—	—	_	—	_	_	—	_	_	0000
9000	CVRCON	15:0	ON	_	—	_	—	_	—	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 10 EDGSEQEN: Edge Sequence Enable bit 1 = Edge 1 must occur before Edge 2 can occur 0 = No edge sequence is needed bit 9 **IDISSEN:** Analog Current Source Control bit⁽²⁾ 1 = Analog current source output is grounded 0 = Analog current source output is not grounded CTTRIG: Trigger Control bit bit 8 1 = Trigger output is enabled 0 = Trigger output is disabled bit 7-2 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 1111111 = Minimum negative change from nominal current 100010 100001 = Maximum negative change from nominal current IRNG<1:0>: Current Range Select bits⁽³⁾ bit 1-0 11 = 100 times base current 10 = 10 times base current 01 = Base current level 00 = 1000 times base current⁽⁴⁾
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
 - 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
 - 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
 - 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output is disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

TABLE 31-21: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for Commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$								
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions				
LPRC @	⊉ 31.25 kHz ⁽¹⁾									
F21	LPRC	-15	_	+15	%	—				

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 31-3: I/O TIMING CHARACTERISTICS

TABLE 31-22: I/O TIMING REQUIREMENTS

AC CHAI	RACTERIS	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
DO31	TioR	Port Output Rise Tir	ne	_	5	15	ns	Vdd < 2.5V		
				_	5	10	ns	Vdd > 2.5V		
DO32	TIOF	Port Output Fall Tim	е	—	5	15	ns	VDD < 2.5V		
				_	5	10	ns	Vdd > 2.5V		
DI35	TINP	INTx Pin High or Lo	w Time	10	_	_	ns			
DI40	Trbp	CNx High or Low Tir	me (input)	2	_	_	TSYSCLK	_		

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 31-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp								
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions				
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	—	—	ns	—				
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	_	ns	—				
SP72	TscF	SCKx Input Fall Time	—		—	ns	See parameter DO32				
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31				
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_			ns	See parameter DO32				
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_		ns	See parameter DO31				
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V				
	TscL2DoV	SCKx Edge			20	ns	VDD < 2.7V				
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	_				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_				
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	175	—		ns	_				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	_	25	ns	_				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	Е		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2