

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx430f064lt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	17
2.0	Guidelines for Getting Started with 32-bit MCUs	
3.0	CPU	
4.0	Memory Organization	39
5.0	Flash Program Memory	53
6.0	Resets	
7.0	Interrupt Controller	63
8.0	Oscillator Configuration	
9.0	Prefetch Cache	83
10.0	Direct Memory Access (DMA) Controller	
11.0	USB On-The-Go (OTG)	113
12.0	I/O Ports	137
13.0	Timer1	167
14.0	Timer2/3, Timer4/5	171
15.0	Watchdog Timer (WDT)	177
16.0	Input Capture	181
17.0	Output Compare	185
18.0	Serial Peripheral Interface (SPI)	
19.0	Inter-Integrated Circuit (I ² C)	
20.0	Universal Asynchronous Receiver Transmitter (UART)	205
21.0	Parallel Master Port (PMP)	
22.0		
23.0	10-bit Analog-to-Digital Converter (ADC)	233
24.0	Comparator	243
25.0	Comparator Voltage Reference (CVREF)	
26.0	Charge Time Measurement Unit (CTMU)	
27.0	Power-Saving Features	257
28.0	Special Features	261
29.0	Instruction Set	273
30.0	Development Support	
31.0	Electrical Characteristics	
32.0	DC and AC Device Characteristics Graphs	329
	Packaging Information	
	Nicrochip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	360

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	_	—	_	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	_	_	—	_	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8	BMXDUDBA<15:8>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
				BMXDU	DBA<7:0>						

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:				
R = Readable bit	adable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		_	_	—	_	—		—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_	—	—	—		—	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	
15:8	BMXDUPBA<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				BMXDU	PBA<7:0>				

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

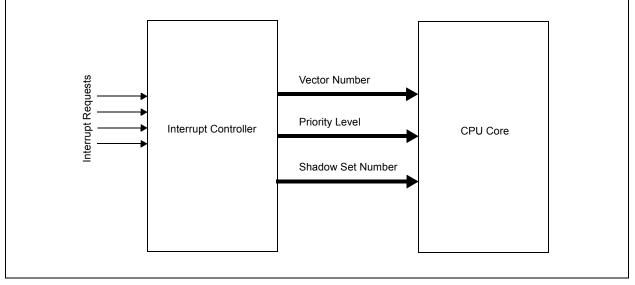
When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 BMXDUPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

7.0 INTERRUPT CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX330/350/370/430/450/470 interrupt module includes the following features:

- Up to 76 interrupt sources
- · Up to 46 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Dedicated shadow set configurable for any priority level (see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in 28.0 "Special Features" for more information)
- Software can generate any interrupt
- User-configurable interrupt vector table location
- User-configurable interrupt vector spacing

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	_	_		_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23:16	—	—	—	_	—	—	_	CHECOH
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	-	—	_	DCSZ	2<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
7:0	_	—	PREFE	N<1:0>	_	PFMWS<2:0>		

REGISTER 9-1: CHECON: CACHE CONTROL REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-17 Unimplemented: Write '0'; ignore read

- bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
 - 1 = Invalidate all data and instruction lines
 - 0 = Invalidate all data lnes and instruction lines that are not locked
- bit 15-10 Unimplemented: Write '0'; ignore read
- bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
 - 11 = Enable data caching with a size of 4 Lines
 - 10 = Enable data caching with a size of 2 Lines
 - 01 = Enable data caching with a size of 1 Line
 - 00 = Disable data caching

Changing these bits induce all lines to be reinitialized to the "invalid" state.

bit 7-6 **Unimplemented:** Write '0'; ignore read

bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits

- 11 = Enable predictive prefetch for both cacheable and non-cacheable regions
- 10 = Enable predictive prefetch for non-cacheable regions only
- 01 = Enable predictive prefetch for cacheable regions only
- 00 = Disable predictive prefetch
- bit 3 Unimplemented: Write '0'; ignore read

bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits

- 111 = Seven Wait states
- 110 = Six Wait states
- 101 = Five Wait states
- 100 = Four Wait states
- 011 = Three Wait states
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait state

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	-	-	_	_	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		—	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_		_		RDWR	[DMACH<2:0>	•

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24				DMAADDF	?<31:24>					
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	DMAADDR<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	DMAADDR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				DMAADD	R<7:0>					

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	_	—	—		—	—	-	—						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	_	—	—	-	—	—	-	—						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15.0	_	—	—	-	—	—	-	—						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0	BDTPTRH<23:16>													

REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** BDT Base Address bits This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
31.24	—	—	_	—	-	_	—	—							
00.40	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0							
23:16	—	—	_	—	-	_	—	—							
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
15:8	—	—	_	—	-	_	—	—							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0		BDTPTRU<31:24>													

REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: BDT Base Address bits

This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

											-								
ŝ										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
50.10		31:16	_	-		_	_	_	_	_	_	-	_	_	-	_	_	_	0000
FCA0	RPG8R	15:0	_	_	_	_	—		_	_	_	_	_	_		RPG8	<3:0>		0000
5044	DDOOD	31:16	_	_	_	_	_	_	—	_	_	_	_	_	_	—	—	—	0000
FCA4	RPG9R	15:0		—	—	-	—	_	—	_	_					RPG9	<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

3: This register is not available on 64-pin devices with a USB module.

14.2 Control Register

TABLE 14-1: TIMER2 THROUGH TIMER5 REGISTER MAP

	-C 14-																		
ess		ē								Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	T2CON	31:16	_	_		—	-	—		-	—	—	_		—	_	_		0000
0000		15:0	ON	—	SIDL	—	—	—	_	—	TGATE	-	CKPS<2:0	>	T32	—	TCS	—	0000
0810	TMR2	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010		15:0								TMR2	<15:0>								0000
0820	PR2	31:16		_	_	_	_	—	—	—	_	_	—	_	—	_	_	_	0000
0020		15:0															FFFF		
0A00	T3CON	31:16	_	_	—	_	—	—	—	_		_	—	—	—	_	—	_	0000
0, 100		15:0	ON - SIDL TGATE TCKPS<2:0> TCS -											0000					
0A10	TMR3	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								TMR3	<15:0>								0000
0A20	PR3	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								PR3<	15:0>								FFFF
0C00	T4CON	31:16	-	_	-	—	_	_	_	_	-		—	_	_	—	_	_	0000
		15:0	ON	_	SIDL	_	_	_	_	_	TGATE		CKPS<2:0		T32	_	TCS		0000
0C10	TMR4	31:16	_	—	—	—	_	—	—	—	-	—	—	—	—	_	_	_	0000
		15:0								TMR4									0000
0C20	PR4	31:16	_	—	—	—	—	—	_	-	-	—	—	—		_	—	_	0000
		15:0								PR4<									FFFF
0E00	T5CON	31:16 15:0													0000				
<u> </u>		31:16				_					IGAIE			<u> </u>	_		-		0000
0E10	TMR5	15:0	_	_	_	—	_	_	_	TMR5 [.]		_	_	_		_	_	—	0000
		31:16	_	_	_		_	_	_			_			_	_		_	0000
0E20	PR5	15:0		_	_	_	_		_			—	_		_	_	_	-	
		13.0	PR5<15:0> FFFF																

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

17.1 **Control Registers**

TABLE 17-1: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 5 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OC1CON	31:16	_	—	—	_	_	—	—	_	_	_	—	—	_		—		0000
3000		15:0	ON	—	SIDL	_	_	—	—	_	-		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3010	OC1R	31:16								OC1R	<31.0>								xxxx
0010	oom	15:0								00111	-011.0-								xxxx
3020	OC1RS	31:16								OC1RS	6<31:0>								XXXX
		15:0															-		XXXX
3200	OC2CON	31:16			-	_	_			_			—	— 			-	—	0000
		15:0 31:16	ON	—	SIDL						—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3210	OC2R	15:0		OC2R<31:0>															
		31.16																	
3220	OC2RS	15:0		OC2RS<31:0>															
		31.16	_		_		_	_	_		_	_	_	_		_	_	_	0000
3400	OC3CON	15:0	ON	_	SIDL	_	_	_	_	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
0440	0000	31:16								0000	-04-05			•					xxxx
3410	OC3R	15:0								OC3R	<31.0>								xxxx
3420	OC3RS	31:16								OC3RS	<31·0>								xxxx
0420	000110	15:0								000110	-01.04								xxxx
3600	OC4CON	31:16		_	—	_	—	—	—	_	_	_	—	—	—	_	—	—	0000
		15:0	ON	—	SIDL	—	—	—	—	—	—	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3610	OC4R	31:16	-							OC4R	<31:0>								XXXX
		15:0																	XXXX
3620	OC4RS	31:16 15:0								OC4RS	\$<31:0>								xxxx
		31:16			_		_	_	_		_	_	_			_	_		xxxx 0000
3800	OC5CON	15:0	ON		SIDL						_		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
		31:16			OIDE								0002	OOLEI	OUTOLL		00111-2.04		xxxx
3810	OC5R	15:0								OC5R	<31:0>								xxxx
	0.0555	31.16								0.05-0									xxxx
3820	OC5RS	15:0	1							OC5RS	s<31:0>								xxxx

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Note 1:

REGISTE	R 19-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 19-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED)

 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. 5: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 	bit 4	P: Stop bit
 Hardware set or clear when Start, Repeated Start or Stop detected. bit 3 S: Start bit = Indicates that a Start (or Repeated Start) bit has been detected last = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) = Read – indicates data transfer is output from slave Write – indicates data transfer is input to slave Write – indicates data transfer is of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit = Receive not complete, I2CxRCV is full = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		
bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I ² C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I ² C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		•
 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		Hardware set or clear when Start, Repeated Start or Stop detected.
 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit = Receive complete, I2CxRCV is full = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 	bit 3	S: Start bit
bit 2 R_W: Read/Write Information bit (when operating as I²C slave)1 = Read – indicates data transfer is output from slave0 = Write – indicates data transfer is input to slaveHardware set or clear after reception of I²C device address byte.bit 1 RBF: Receive Buffer Full Status bit1 = Receive complete, I2CxRCV is full0 = Receive not complete, I2CxRCV is emptyHardware set when I2CxRCV is written with received byte. Hardware clear when softwarebit 0 TBF: Transmit Buffer Full Status bit		
 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		Hardware set or clear when Start, Repeated Start or Stop detected.
 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 	bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
 Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		1 = Read – indicates data transfer is output from slave
bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		
 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		Hardware set or clear after reception of I ² C device address byte.
 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 	bit 1	RBF: Receive Buffer Full Status bit
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		1 = Receive complete, I2CxRCV is full
reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		0 = Receive not complete, I2CxRCV is empty
1 = Transmit in progress, I2CxTRN is full	bit 0	TBF: Transmit Buffer Full Status bit
		1 = Transmit in progress, I2CxTRN is full
0 = Transmit complete, I2CxTRN is empty		0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	_	_	_	_
00.40	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23:16				_	_	_	_	_
45.0	R-0	R-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>
7.0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB	<1:0> (1)		WAITM	<3:0>(1)		WAITE	<1:0> (1)

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address
- bit 10 **MODE16:** 8/16-bit Mode bit
 - 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 - 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB = 1 TPB cycle, WAITE = 0 TPB cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾
 - 1111 = Wait of 16 Трв • •
 - 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)
- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 TPB 10 = Wait of 3 TPB 01 = Wait of 2 TPB
 - 00 = Wait of 1 Трв (default)

For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB 00 = Wait of 0 TPB (default)

- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB = 1 TPB cycle, WAITE = 0 TPB cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - **3:** These pins are active when MODE16 = 1 (16-bit mode).

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

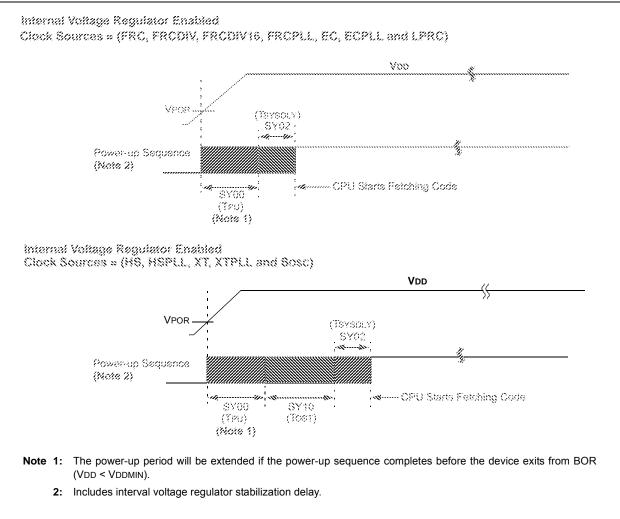
ess		0								В	its								ŝ
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	31:16 15:0							ADC Res	ult Word A	(ADC1BUF	A<31:0>)							0000
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>) 0000 0000															
9130	ADC1BUFC	31:16 15:0		ADC Result Word C (ADC1BUFC<31:0>) 0000 0000															
9140	ADC1BUFD	31:16 15:0							ADC Res	ult Word D	(ADC1BUF	D<31:0>)							0000
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>)															
9160	ADC1BUFF	31:16 15:0		ADC Result Word F (ADC1BUFF<31:0>) 0000 0000 0000															

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)


- bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
 - 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
 - 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
 - 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output is disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)							
DC CHARACTERISTICS			Operatin	ig tempe	erature	$0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial -40°C $\le TA \le +85^{\circ}C$ for Industrial -40°C $\le TA \le +105^{\circ}C$ for V-temp		
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	V	IOL \leq 9 mA, VDD = 3.3V	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RC15, RD2, RD10, RF6, RG6	_	_	0.4	v	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
DO20	Voн	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	v	IOH ≥ -10 mA, VDD = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	2.4	_	_	V	Ioh \ge -15 mA, Vdd = 3.3V	
DO20A	Vон1	Output High Voltage	1.5 ⁽¹⁾	_		V	IOH \ge -14 mA, VDD = 3.3V	
		4x Source Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	2.0 ⁽¹⁾	_	_		IOH \ge -12 mA, VDD = 3.3V	
			3.0 ⁽¹⁾				IOH \ge -7 mA, VDD = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	1.5 ⁽¹⁾	_	_	v	IOH \ge -22 mA, VDD = 3.3V	
			2.0 ⁽¹⁾	_	_		Ioh \geq -18 mA, Vdd = 3.3V	
			3.0 ⁽¹⁾	_	_		IOH \ge -10 mA, VDD = 3.3V	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
Clock P	arameter	S						
AD50	TAD	ADC Clock Period ⁽²⁾	65			ns	See Table 31-36	
Conver	sion Rate	•						
AD55	TCONV	Conversion Time	_	12 Tad		_	_	
AD56 F	FCNV	Throughput Rate (Sampling Speed) ⁽⁴⁾	_	_	1000	ksps	AVDD = 3.0V to 3.6V	
			_	—	400	ksps	AVDD = 2.5V to 3.6V	
AD57	TSAMP	Sample Time	2 Tad	_	—	_	—	
Timing	Paramete	rs						
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 TAD	—	1.5 TAD	_	-	
AD62	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—	_	-	
AD63	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	_	

TABLE 31-37: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: Refer to Table 31-36 for detailed conditions.

Revision E (October 2015)

This revision includes the following updates, as listed in Table A-4.

TABLE A-4: MAJOR SECTION UPDATES

Section	Update Description		
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Section 2.10 "Sosc Design Recommendations" was removed.		
31.0 "Electrical Characteristics"	The Power-Down Current (IPD) DC Characteristics were updated (see Table 31-7).		

Revision F (September 2016)

This revision includes the following updates, as listed in Table A-5.

TABLE A-5: MAJOR SECTION UPDATES

Section	Update Description
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB	The PIC32MX450F128HB and PIC32MX470F512LB devices and Note 4 were added to the family features table (see Table 1).
SRAM) with Audio/	Note 2 in the 64-pin device pin table was updated (see Table 2).
Graphics/Touch (HMI), USB, and Advanced Analog"	Note 2 in the 64-pin device pin table was updated and Note 4 was removed (see Table 3).
	Note 2 and Note 3 in the 100-pin device pin table was updated (see Table 4).
	Note 3 in the 124-pin device pin table was updated (see Table 6).
	Note 2 in the 124-pin device pin table was updated (see Table 7).
	RPF3 was removed from USB devices (see Table 3, Table 5, and Table 7).
1.0 "Device Overview"	The Pinout I/O Descriptions for pins $\overline{\text{U5CTS}}$, $\overline{\text{U5RTS}}$, $\overline{\text{U5RX}}$, and $\overline{\text{U5TX}}$ in 64-pin QFN/TQFP packages were updated (see Table 1-1).
2.0 "Guidelines for Getting Started with 32-bit MCUs"	2.10 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.
8.0 "Oscillator	The Clock Diagram was updated (see Figure 8-1).
Configuration"	The Center Frequency values in the TUN<5:0> bits (OSCTUN<5:0>) were updated (see Register 8-2).
12.0 "I/O Ports"	Note references in the Input Pin Selection table were updated (see Table 12-1).
	Note references in the Output Pin Selection table were updated (see Table 12-2).
	PORTF Register Maps were updated (see Table 12-11 and Table 12-3).
	Note 1 was added to the Peripheral Pin Select Input Register Map (see Table 12-17).
31.0 "Electrical	The conditions for parameter DI60b (IICH) were updated (see Table 31-8).
Characteristics"	Parameter DO50a (Csosc) was removed.
	The maximum value for parameter OS10 (Fosc) was updated (see Table 31-18).
	Parameter PM7 (TDHOLD) was updated (see Table 31-39).
	Note 1 was added to the DC Characteristics: Program Memory (see Table 31-12).
33.0 "Packaging Information"	The Land Pattern for 64-pin QFN packages was updated.
"Product Identification System"	The Software Targeting category was added.