

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f128ht-v-mr

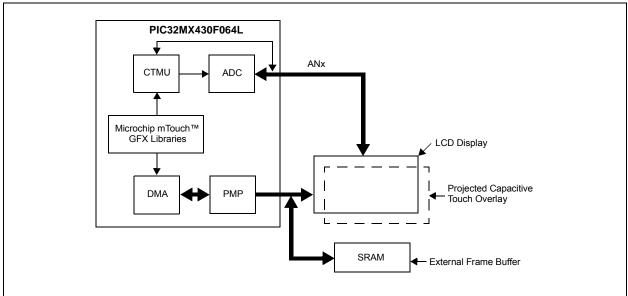
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4,5) A17			A34
	AT/		B13 B29	Conductive Thermal Pad
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L		B1 E B56	341 A51
	Polarity I	A1 tor	A68	
Package Bump #	Full Pin Name	Package Bump #		Full Pin Name
B7	MCLR	B32	SDA2/RA3	
B8	Vss	B33	TDO/RA5	
B9	TMS/CTED1/RA0	B34	OSC1/CLKI/RC12	
B10	RPE9/RE9	B35	No Connect	
B11	AN4/C1INB/RB4	B36	RPA14/RA14	
B12	Vss	B37	RPD8/RTCC/RD8	
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	B38	RPD10/PMCS2/RD10)
B14	PGED1/AN0/RPB0/RB0	B39	RPD0/RD0	
B15	No Connect	B40	SOSCO/RPC14/T1Ck	
B16	PGED2/AN7/RPB7/CTED3/RB7	B41	Vss	
B17	VREF+/CVREF+/PMA6/RA10	B42	AN25/RPD2/RD2	
B18	AVss	B43	RPD12/PMD12/RD12	
B19	AN9/RPB9/CTED4/RB9	B44	RPD4/PMWR/RD4	
B20	AN11/PMA12/RB11	B45	PMD14/RD6	
B21	VDD	B46	No Connect	
B22	RPF13/RF13	B47	No Connect	
B23	AN12/PMA11/RB12	B48	VCAP	
B24	AN14/RPB14/CTED5/PMA1/RB14	B49	RPF0/PMD11/RF0	
B25	Vss	B50	RPG1/PMD9/RG1	
B26	RPD14/RD14	B51	TRCLK/RA6	
B27	RPF4/PMA9/RF4	B52	PMD0/RE0	
B28	No Connect	B53	Vdd	
B29	RPF8/RF8	B54	TRD2/RG14	
B30	RPF6/SCKI/INT0/RF6	B55	TRD0/RG13	
B31	SCL1/RG2	B56	RPE3/CTPLS/PMD3/	RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.


2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

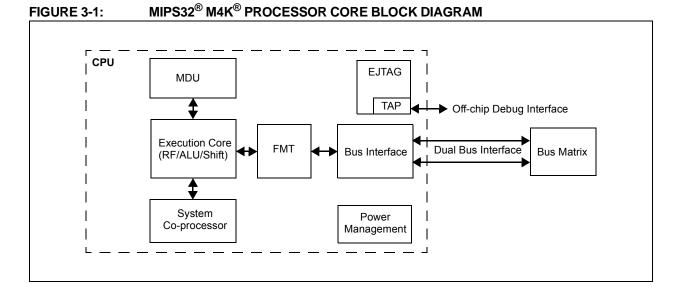
3: RPF6 (bump B30) and RPF7 (bump A37) are only remappable for input functions.

4: Shaded package bumps are 5V tolerant.

5: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

FIGURE 2-8: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

3.0 CPU


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at http://www.imgtec.com.

The the MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX330/350/370/430/450/470 device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

- 5-stage pipeline
- · 32-bit address and data paths
- MIPS32[®] Enhanced Architecture (Release 2):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions

- MIPS16e[®] Code Compression:
 - 16-bit encoding of 32-bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) Mechanism:
- Simple Dual Bus Interface:
 - Independent 32-bit address and data buses
 - Transactions can be aborted to improve interrupt latency
- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x16 multiply per clock
 - Maximum issue rate of one 32x32 multiply every other clock
 - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (*rs*) sign extension-dependent)
- · Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value
 - Breakpoints

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24				CHEW1<	:31:24>							
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16		CHEW1<23:16>										
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8				CHEW1	<15:8>							
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7:0				CHEW1	<7:0>							

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24				CHEW2<	31:24>							
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16	CHEW2<23:16>											
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8				CHEW2	<15:8>							
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7:0				CHEW2	<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

10.1 Control Registers

TABLE 10-1: DMA GLOBAL REGISTER MAP

ess		0								Bit	S								ŝ
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2000	DMACON	31:16	-	_	-	—	—	_	—	—	—	—	_	—	-	—	—	_	0000
3000	DIVIACON	15:0	ON	_	_	SUSPEND	DMABUSY	—	_	_	_	_	_	—	—	_	—	_	0000
2010	DMASTAT	31:16		_	—	—	—	_	—	—	—	—	_	_	—	_	—	_	0000
3010	DIVIASTAT	15:0		_	—	—	—	_	—	—	—	—	_	_	RDWR	C	MACH<2:0	>	0000
2020	DMAADDR	31:16								DMAADD	D-21.05								0000
3020	DIVIAADDR	15:0								DIVIAADD	KN01.02								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 10-2: DMA CRC REGISTER MAP

ess										Bi	ts		_						
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2020		31:16	_	—	BYTO	TO<1:0> WBO BITO 00							0000						
3030	DCRCCON	15:0	_	—	_			PLEN<4:0>			CRCEN	CRCAPP	CRCTYP	—	—	C	RCCH<2:0	>	0000
3040	DCRCDATA	31:16									TA -21.05								0000
3040	DCRCDAIA	15:0		DCRCDATA<31:0>															
2050	DCRCXOR	31:16		DCRCXOR<31:0>															
3050	DURUXUR	15:0	DCRCXOR<31.0>								0000								

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_		_	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	-	_	—	_	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	_	_	_	_	_	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>

REGISTER 10-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14-9 Unimplemented: Read as '0'
- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

- 1 = Channel start/abort events will be registered, even if the channel is disabled
- 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allow channel to be chained
- 0 = Do not allow channel to be chained
- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_			—		_		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_			—	-	_		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	_	_	_	—	_	_	-	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPDEN			D	EVADDR<6:0	>		

REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 **LSPDEN:** Low Speed Enable Indicator bit

1 = Next token command to be executed at Low Speed

0 = Next token command to be executed at Full Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

				HOMBER E				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	-	_	—	_	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	_	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—			—	-	—	—
7.0	R-0 R-0		R-0	R-0	R-0	R-0	R-0	R-0
7:0				FRML	<7:0>			

REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

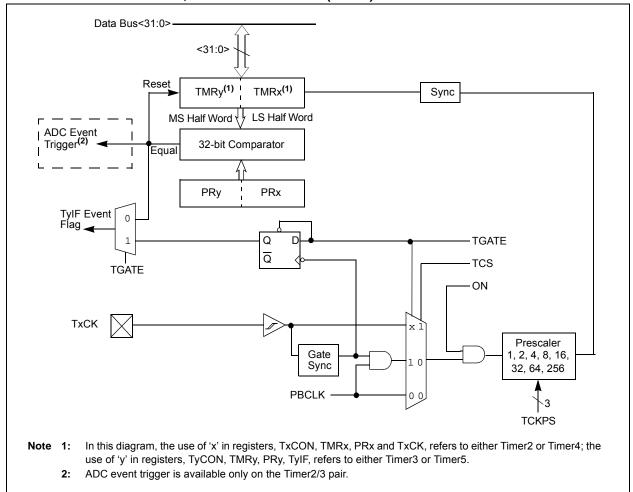
The register bits are updated with the current frame number whenever a SOF TOKEN is received.

TABLE 12-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

sse										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FA54	U1CTSR	31:16	_	_	_		_	_	_	_	_	_	_	—				_	0000
FA04	UICISK	15:0	—	—	_	_	—	—		—			—	—		U1CTS	SR<3:0>		0000
		31:16	—	—	_	_	—	—		—			—	—	_		—	_	0000
FA58	U2RXR	15:0	—	—	_	_	—	—		—			—	—		U2RX	R<3:0>		0000
FA5C	U2CTSR	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
FASC	UZCISK	15:0	—	—	_	_	—	—		—			—	—		U2CTS	SR<3:0>		0000
FA60	U3RXR	31:16	—	—	_	_	—	—		—			—	—	_		—	_	0000
FAOU	USKAR	15:0	—	—	_	_	—	—		—			—	—		U3RX	R<3:0>		0000
5464	U3CTSR	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
FA64	USCISK	15:0	_	_	_	_	_	_	_	_	_	_	_	_		U3CTS	SR<3:0>		0000
5400	U4RXR	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
FA68	U4RXR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		U4RX	R<3:0>		0000
FA6C	U4CTSR	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
FAGC	U4CISR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		U4CTS	SR<3:0>		0000
FA70	U5RXR ⁽¹⁾	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
FA70	USRXR ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	—	_	_	-		U5RX	R<3:0>		0000
FA74	U5CTSR ⁽¹⁾	31:16	_	_	_	_	_	_	—	_	—	—	—	—	_	—	—	-	0000
FA74	0501580	15:0	_	_	_	_	_	_	_	_	_	_	_	_		U5CTS	SR<3:0>		0000
5404	SDI1R	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
FA84	SDITR	15:0	_	_	_	_	_	_	_	_	—	_	_	-		SDI1F	R<3:0>		0000
FA00	0040	31:16	_	_	_	_	_	_	—	_	—	—	—	—	_	—	—	-	0000
FA88	SS1R	15:0	_	_	_	_	_	_	_	_	—	_	_	_		SS1F	R<3:0>		0000
FA00	SDI2R	31:16	_	—	_		—	—		—	-		—	_	_	—	—	_	0000
FA90	SDIZR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		SDI2F	R<3:0>		0000
E404	SS2R	31:16	_	—	_		—	—		—	-		—	_	_	—	—	_	0000
FA94	552R	15:0	_	_	—	_	_	_	_	_	_	_	_	—		SS2F	R<3:0>		0000
FADO		31:16	_	—	_	_	—	—		—	_		—	_	_	_	—	_	0000
FAD0	REFCLKIR	15:0	_	_	_	—	_	—	_	—	_	—	_	_		REFCL	<ir<3:0></ir<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	_	_		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	—	-	_	_	_	—
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	_	SIDL	_	_		_	—
7.0	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
7:0	_		_	_	_	_	_	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = CPU Idle Mode halts CN operation
 - 0 = CPU Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)⁽¹⁾

15.1 Watchdog Timer Control Registers

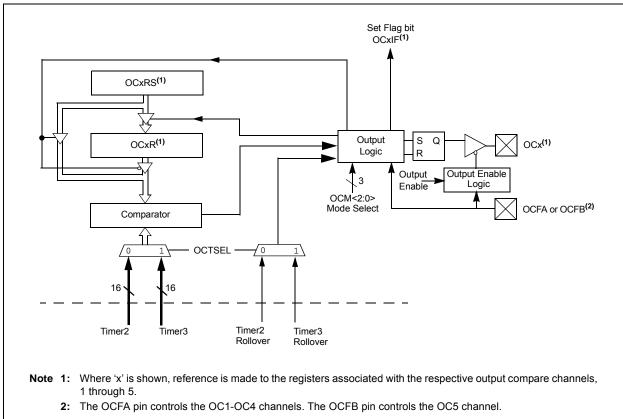
DS60001185F-page	
е —	
78	

TABLE 15-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		æ		Bits															
Virtual Addres (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	WDTCON	31:16	_	_	_	_	-	-	—	—	_	—	—	_	_	_	—	—	0000
0000	WDICON	15:0	ON				_	_	_	_			SI	VDTPS<4:)>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.


17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess		0					Bits												8
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0200	RTCCON	31:16	_	_	_	-	_	-			CAL<9:0>							0000	
0200	RICCON	15:0	ON	_	SIDL	—	_					RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	—	_	_	—	_	-		_	—	_	_	_	—	_	—	—	0000
0210	RICALNI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC	C AMASK<3:0> ARPT<7:0>								0000				
0220	RTCTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0220		15:0		SEC1	0<3:0>			SEC07	1<3:0>		—	_	_	_	_	—	—	—	xx00
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>			MONTH10	<3:0>			MONTH	01<3:0>		xxxx
0230	RIODAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	_	_	_		WDAY0	1<3:0>		xx00
0240	ALRMTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC1	0<3:0>			SEC01<3:0> — — —				_	_	_	—	—	—	xx00	
0250	ALRMDATE	31:16	—	_	_	_	—	—	—	_		MONTH10	<3:0>			MONTH	01<3:0>		00xx
0200		15:0		DAY1	0<3:0>		DAY01<3:0>				—	_	_	_		WDAY0	1<3:0>		xx0x

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	—	—	—	_	_		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	—	—	—	_	_		—
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	SIDL	—	_	_		—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
7:0		_					C2OUT	C1OUT

REGISTER 24-2: CMSTAT: COMPARATOR STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13 SIDL: Stop in IDLE Control bit

1 = All Comparator modules are disabled in IDLE mode

0 = All Comparator modules continue to operate in the IDLE mode

- bit 12-2 Unimplemented: Read as '0'
- bit 1 **C2OUT:** Comparator Output bit
 - 1 = Output of Comparator 2 is a '1'
 - 0 = Output of Comparator 2 is a '0'

bit 0 C1OUT: Comparator Output bit

- 1 = Output of Comparator 1 is a '1'
- 0 = Output of Comparator 1 is a '0'

25.1 Control Register

TABLE 25-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess		e								Bits									ú
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	CVRCON	31:16	_	—	-	-	-	-	—	—	_	-	-	—	—	—	—	_	0000
9000	UVRCON	15:0	ON	—	_	_	—	—	—	—	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 31-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHA	RACTERI	STICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min. Typ. Max. Units Comments				Comments	
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.	_		10	μs	See Note 1	
D313	DACREFH	CVREF Input Voltage	AVss		AVDD	V	CVRSRC with CVRSS = 0	
		Reference Range	VREF-		VREF+	V	CVRSRC with CVRSS = 1	
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size	
			0.25 x DACREFH	—	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/ 32 step size	
D315	DACRES	Resolution	_	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>	
			—		DACREFH/32		CVRCON <cvrr> = 0</cvrr>	
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>	
			_		1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>	

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 31-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (3 ohm). Typical voltage on the VCAP pin is 1.8V.

TABLE 31-18: EXTERNAL CLOCK TIMING REQUIREMENTS

			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
AC CHA	RACTER	RISTICS	$\begin{array}{ll} Operating \ temperature & 0^\circ C \leq TA \leq +70^\circ C \ for \ Commercial \\ -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +105^\circ C \ for \ V\text{-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4	_	50 50	MHz MHz	EC (Note 4) ECPLL (Note 3)	
OS11		Oscillator Crystal Frequency	3		10	MHz	XT (Note 4)	
OS12			4		10	MHz	XTPLL (Notes 3,4)	
OS13			10		25	MHz	HS (Note 4)	
OS14			10	_	25	MHz	HSPLL (Notes 3,4)	
OS15			32	32.768	100	kHz	Sosc (Note 4)	
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	_	—	_	_	See parameter OS10 for Fosc value	
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc		_	ns	EC (Note 4)	
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	_	0.05 x Tosc	ns	EC (Note 4)	
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)	
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)	
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12	_	mA/V	VDD = 3.3V, TA = +25°C (Note 4)	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

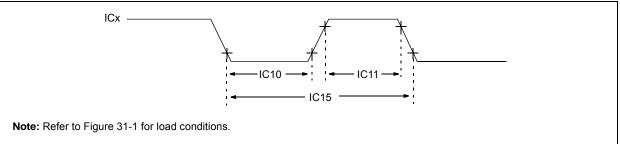

- 2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.
- **3:** PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 31-25: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Cha	racteristic	s ⁽¹⁾ Min. Max. Units Con				Condit	itions	
TB10	ТтхН	TxCK High Time	Synchrono prescaler	ous, with	[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	value (1, 2, 4, 8,	
TB11	ΤτxL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	16, 32, 64, 256)	
TB15	ΤτχΡ	TxCK Input	Synchronous, with prescaler		[(Greater of [(25 ns or 2 TPB)/N] + 30 ns	—	ns	VDD > 2.7V		
		Period			[(Greater of [(25 ns or 2 TPB)/N] + 50 ns	—	ns	VDD < 2.7V		
TB20	TCKEXTMRL	Delay from Clock Edge			_	1	Трв	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 31-26: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless oth	perating Conditions: 2.3V erwise stated) mperature $0^{\circ}C \le TA \le +70$ $-40^{\circ}C \le TA \le +$ $-40^{\circ}C \le TA \le +$	°C for C 85°C for	Industri	al		
Param. No.	Symbol	Charac	cteristics ⁽¹⁾ Min. Max. Units				Con	Conditions	
IC10	TccL	ICx Input Low Time		[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)	
IC11	ТссН	ICx Input High Time		[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.		
IC15	TCCP	ICx Input	t Period	[(25 ns or 2 Трв)/N] + 50 ns		ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX330/350/370/430/450/470

33.1 Package Marking Information (Continued)

64-Lead QFN (9x9x0.9 mm) with 5.40x5.40 Exposed Pad

2
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
YYWWNNN

64-Lead QFN (9x9x0.9 mm) with 4.7x4.7 Exposed Pad

Example						
© ™						
PIC32MX330F 064H-I/RG						
e3						
0510017						

124-Lead VTLA (9x9x0.9 mm)

C XXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN Example

Legend	: XXX	Customer-specific information					
•	Y Year code (last digit of calendar year)						
	YY	Year code (last 2 digits of calendar year)					
	WW Week code (week of January 1 is week '01')						
	NNN	Alphanumeric traceability code					
		Pb-free JEDEC designator for Matte Tin (Sn)					
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)					
		can be found on the outer packaging for this package. \smile					
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will					
		d over to the next line, thus limiting the number of available s for customer-specific information.					

Revision D (March 2015)

This revision includes the following updates, as listed in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section	Update Description					
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/ Touch (HMI), USB, and Advanced Analog"	100 MHz and 120 MHz operation information was added. Pins 59 through 63 of the 64-pin QFN and TQFP pin diagrams were updated.					
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Added 2.8.1 "Crystal Oscillator Design Consideration".					
12.0 "I/O Ports"	The Block Diagram of a Typical Multiplexed Port Structure was updated (see Figure 12-1).					
21.0 "Parallel Master Port (PMP)"	The PMADDR: Parallel Port Address Register was updated (see Register 21-3).					
31.0 "Electrical Characteristics"	 Specifications for 120 MHz operation were added to the following tables: Table 31-1: "Operating MIPS vs. Voltage" Table 31-5: "DC Characteristics: Operating Current (IDD)" Table 31-6: "DC Characteristics: Idle Current (IDLE)" Table 31-7: "DC Characteristics: Idle Current (IPD)" Table 31-13: "DC Characteristics: Program Flash Memory Wait State" Table 31-18: "External Clock Timing Requirements" The unit of measure for IIDLE Current parameters DC37a, DC37b, and DC37c were updated (see Table 31-6). Parameter D312 (TSET) was removed from the Comparator Specifications (see Table 31-14). Comparator Voltage Reference Specifications were added (see Table 31-15). Parameter USB321 (VOL) in the OTG Electrical Specifications was updated (see Table 31-41). 					
32.0 "Packaging Information"	The 64-lead QFN package marking information was updated. The 124-lead VTLA package land pattern information was added.					
"Product Identification System"	The Speed category was removed. The Example was updated. The MR package was updated. The RG package was added.					