

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256h-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	17			A34	
	A	17		B13 B29		nductive ermal Pad
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L			B1 B56	B41	A51
		y Indica	A1 tor	A68		
Package Bump #	Full Pin Name		Package Bump #		Full Pin Name	
B7	MCLR		B32	SDA2/RA3		
B8	Vss		B33	TDO/RA5		
B9	TMS/CTED1/RA0		B34	OSC1/CLKI/RC12	2	
B10	RPE9/RE9		B35	No Connect		
B11	AN4/C1INB/RB4		B36	SCL1/RPA14/RA	14	
B12	Vss		B37	RPD8/RTCC/RD8	8	
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD10/SCK1/PM	CS2/RD10	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0/INT0/RD0		
B15	No Connect		B40	SOSCO/RPC14/T	1CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss		
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/RPD2/RD2		
B18	AVss		B43	RPD12/PMD12/R	D12	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4/PMWR/RD	4	
B20	AN11/PMA12/RB11		B45	PMD14/RD6		
B21	Vdd		B46	No Connect		
B22	RPF13/RF13		B47	No Connect		
B23	AN12/PMA11/RB12		B48	VCAP		
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0/PMD11/RF	0	
B25	Vss		B50	RPG1/PMD9/RG	1	
B26	RPD14/RD14		B51	TRCLK/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0/RE0		
B28	No Connect		B53	VDD		
B29	RPF8/RF8		B54	TRD2/RG14		
B30	VUSB3V3		B55	TRD0/RG13		
B31	D+		B56	RPE3/CTPLS/PM	D3/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

PIC32MX330/350/370/430/450/470

		Pin Numb	er			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
RE0	60	93	B52	I/O	ST	
RE1	61	94	A64	I/O	ST	
RE2	62	98	A66	I/O	ST	
RE3	63	99	B56	I/O	ST	
RE4	64	100	A67	I/O	ST	DODIE is a hidiractional I/O part
RE5	1	3	B2	I/O	ST	PORTE is a bidirectional I/O port
RE6	2	4	A4	I/O	ST	
RE7	3	5	B3	I/O	ST	
RE8	—	18	A11	I/O	ST]
RE9	—	19	B10	I/O	ST]
RF0	58	87	B49	I/O	ST	
RF1	59	88	A60	I/O	ST	1
RF2	34(1)	52	A36	I/O	ST	1
RF3	33	51	A35	I/O	ST	
RF4	31	49	B27	I/O	ST	
RF5	32	50	A32	I/O	ST	PORTF is a bidirectional I/O port
RF6	35(1)	55(1)	B30 ⁽¹⁾	I/O	ST	
RF7	—	54(1)	A37 ⁽¹⁾	I/O	ST	
RF8	—	53	B29	I/O	ST	
RF12	—	40	A27	I/O	ST	
RF13	—	39	B22	I/O	ST	
RG0		90	A61	I/O	ST	
RG1		89	B50	I/O	ST	
RG2	37(1)	57(1)	B31	I/O	ST	
RG3	36 ⁽¹⁾	56 ⁽¹⁾	A38	I/O	ST	
RG6	4	10	A7	I/O	ST	
RG7	5	11	B6	I/O	ST	POPTC is a hidiractional 1/0 part
RG8	6	12	A8	I/O	ST	PORTG is a bidirectional I/O port
RG9	8	14	A9	I/O	ST	
RG12	—	96	A65	I/O	ST]
RG13	—	97	B55	I/O	ST]
RG14	—	95	B54	I/O	ST]
RG15	_	1	A2	I/O	ST	
T1CK	48	74	B40	I	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	I	ST	Timer2 External Clock Input
ТЗСК	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	I	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	1	ST	Timer5 External Clock Input

TABLE 1-1-PINOLIT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module. 2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	_	_	_	—		—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	_	—	_	_	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8	BMXDKPBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				BMXDK	PBA<7:0>						

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMDATA<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	NVMDATA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMDATA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				NVMD	ATA<7:0>							

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		NVMSRCADDR<31:24>										
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	NVMSRCADDR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMSRCADDR<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0		NVMSRCADDR<7:0>										

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	nplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Interrupt Source ⁽¹⁾	IRQ #	Vector		Interru	upt Bit Location		Persistent
Interrupt Source."	IKQ #	#	Flag	Enable	Priority	Sub-priority	Interrupt
CNB – PORTB Input Change Interrupt	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>	Yes
CNC – PORTC Input Change Interrupt	46	33	IFS1<14>	IEC1<14>	IPC8<12:10>	IPC8<9:8>	Yes
CND – PORTD Input Change Interrupt	47	33	IFS1<15>	IEC1<15>	IPC8<12:10>	IPC8<9:8>	Yes
CNE – PORTE Input Change Interrupt	48	33	IFS1<16>	IEC1<16>	IPC8<12:10>	IPC8<9:8>	Yes
CNF – PORTF Input Change Interrupt	49	33	IFS1<17>	IEC1<17>	IPC8<12:10>	IPC8<9:8>	Yes
CNG – PORTG Input Change Interrupt	50	33	IFS1<18>	IEC1<18>	IPC8<12:10>	IPC8<9:8>	Yes
PMP – Parallel Master Port	51	34	IFS1<19>	IEC1<19>	IPC8<20:18>	IPC8<17:16>	Yes
PMPE – Parallel Master Port Error	52	34	IFS1<20>	IEC1<20>	IPC8<20:18>	IPC8<17:16>	Yes
SPI2E – SPI2 Fault	53	35	IFS1<21>	IEC1<21>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2RX – SPI2 Receive Done	54	35	IFS1<22>	IEC1<22>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2TX – SPI2 Transfer Done	55	35	IFS1<23>	IEC1<23>	IPC8<28:26>	IPC8<25:24>	Yes
U2E – UART2 Error	56	36	IFS1<24>	IEC1<24>	IPC9<4:2>	IPC9<1:0>	Yes
U2RX – UART2 Receiver	57	36	IFS1<25>	IEC1<25>	IPC9<4:2>	IPC9<1:0>	Yes
U2TX – UART2 Transmitter	58	36	IFS1<26>	IEC1<26>	IPC9<4:2>	IPC9<1:0>	Yes
I2C2B – I2C2 Bus Collision Event	59	37	IFS1<27>	IEC1<27>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2S – I2C2 Slave Event	60	37	IFS1<28>	IEC1<28>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2M – I2C2 Master Event	61	37	IFS1<29>	IEC1<29>	IPC9<12:10>	IPC9<9:8>	Yes
U3E – UART3 Error	62	38	IFS1<30>	IEC1<30>	IPC9<20:18>	IPC9<17:16>	Yes
U3RX – UART3 Receiver	63	38	IFS1<31>	IEC1<31>	IPC9<20:18>	IPC9<17:16>	Yes
U3TX – UART3 Transmitter	64	38	IFS2<0>	IEC2<0>	IPC9<20:18>	IPC9<17:16>	Yes
U4E – UART4 Error	65	39	IFS2<1>	IEC2<1>	IPC9<28:26>	IPC9<25:24>	Yes
U4RX – UART4 Receiver	66	39	IFS2<2>	IEC2<2>	IPC9<28:26>	IPC9<25:24>	Yes
U4TX – UART4 Transmitter	67	39	IFS2<3>	IEC2<3>	IPC9<28:26>	IPC9<25:24>	Yes
U5E – UART5 Error	68	40	IFS2<4>	IEC2<4>	IPC10<4:2>	IPC10<1:0>	Yes
U5RX – UART5 Receiver	69	40	IFS2<5>	IEC2<5>	IPC10<4:2>	IPC10<1:0>	Yes
U5TX – UART5 Transmitter	70	40	IFS2<6>	IEC2<6>	IPC10<4:2>	IPC10<1:0>	Yes
CTMU – CTMU Event	71	41	IFS2<7>	IEC2<7>	IPC10<12:10>	IPC10<9:8>	Yes
DMA0 – DMA Channel 0	72	42	IFS2<8>	IEC2<8>	IPC10<20:18>	IPC10<17:16>	No
DMA1 – DMA Channel 1	73	43	IFS2<9>	IEC2<9>	IPC10<28:26>	IPC10<25:24>	No
DMA2 – DMA Channel 2	74	44	IFS2<10>	IEC2<10>	IPC11<4:2>	IPC11<1:0>	No
DMA3 – DMA Channel 3	75	45	IFS2<11>	IEC2<11>	IPC11<12:10>	IPC11<9:8>	No
		Lowe	st Natural Or	der Priority			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of available peripherals.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP

ess		0								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH0CON	31:16	—	_		_		_	_	_	_	_	_	_	_	_	_		0000
3060	DCHUCON	JN 15:0 CHBUSY — — — — — CHCHNS CHEN CHAED CHAEN — CHEDET CHPRI<1:0>										0000							
3070	DCH0ECON	31:16												00FF					
0070	DOINCEOUN	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FFF8
3080	DCH0INT	31:16	—	—	—	—	-	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0000	Borioitti	15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCH0SSA	31:16 15:0	CHSSA<31:0>																
		31:16	6																
30A0	DCH0DSA	15:0								CHDSA	A<31:0>								0000
		31:16	_	_	_		_	_	_	_	_	_	_	_	_	_		_	0000
30B0	DCH0SSIZ	15:0								CHSSIZ	Z<15:0>								0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
30C0	DCH0DSIZ	15:0 CHDSIZ<15:0> 000										0000							
0000		31:16	—	_	—	—	—	—	—	_	—		_	—	_	_	—	_	0000
30D0	DCH0SPTR	15:0								CHSPT	R<15:0>					•			0000
2050		31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	0000
30E0	DCH0DPTR	15:0								CHDPT	R<15:0>								0000
2050	DCH0CSIZ	31:16	—		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
30FU	DCHUCSIZ	15:0								CHCSIZ	Z<15:0>								0000
3100	DCH0CPTR	31:16	—	_		_		_	_	—	_	_	_	_	_	_	_		0000
3100	DCHUCFTK	15:0								CHCPT	R<15:0>		-						0000
3110	DCH0DAT	31:16	—	—		—	_	—	—	—		—	—	—	—	—	—	—	0000
5110	DONUDAI	15:0	—	—	_	—	_		—	—				CHPDA	AT<7:0>				0000
3120	DCH1CON	31:16	—	—	_	—	—		—		—	—	—	—	—	—	—	—	0000
0120	Bonnoon	15:0	CHBUSY	—	—	—	_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	l<1:0>	0000
3130	DCH1ECON	31:16	—	—	—	—	—	—	—	—		1	-		Q<7:0>	-			OOFF
0.00		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—		—	FFF8
3140	DCH1INT	31:16	-	_	_	—	_	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
55		15:0 — — — — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHF CHBCIF CHCCIF CHTAIF CHERIF 0000									0000								
3150	DCH1SSA	A 31:16 0000																	
		15:0	0000																
3160	DCH1DSA	31:16 0000																	
		15:0								exadecimal									0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

INE OIDTE	SISTER 10-6. DEFRECON. DMA CHANNEL & EVENT CONTROL REGISTER											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24		—	_	—	—		—	—				
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23:16	CHAIRQ<7:0> ⁽¹⁾											
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
15:8	CHSIRQ<7:0> ⁽¹⁾											
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN							

REGISTER 10-8 DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 31-24	Unimplemented: Read as '0'
bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
	00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
h:4 7	
bit 7	CFORCE: DMA Forced Transfer bit
	1 = A DMA transfer is forced to begin when this bit is written to a '1'
	0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match
	0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs

- Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31:24		—	—	—		—	—	—
23:16	U-0	U-0						
23.10			_	_	_	_	_	—
15:8	U-0	U-0						
10.0	_	_	_	_		_	_	—
	R/W-0	R/W-0						
7:0	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ⁽¹⁾ EOFEE ⁽²⁾	PIDEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit

- 1 = BTSEF interrupt is enabled
- 0 = BTSEF interrupt is disabled
- bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit
 - 1 = BMXEF interrupt is enabled
 - 0 = BMXEF interrupt is disabled
- bit 5 **DMAEE:** DMA Error Interrupt Enable bit
 - 1 = DMAEF interrupt is enabled
 - 0 = DMAEF interrupt is disabled
- bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
 - 1 = BTOEF interrupt is enabled
 - 0 = BTOEF interrupt is disabled
- bit 3 **DFN8EE:** Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled

Note 1: Device mode.

2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX
RPB15	RPB15R	RPB15R<3:0>	0011 = REFCLKO 0100 = U5TX ⁽⁴⁾
RPD4	RPD4R	RPD4R<3:0>	0100 = 001 x 0
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved
RPE3	RPE3R	RPE3R<3:0>	0111 = <u>SS1</u>
RPB7	RPB7R	RPB7R<3:0>	1000 = SDO1
RPB2	RPB2R	RPB2R<3:0>	1001 = Reserved
RPF12 ⁽⁴⁾	RPF12R	RPF12R<3:0>	1010 = Reserved
RPD12 ⁽⁴⁾	RPD12R	RPD12R<3:0>	
RPF8 ⁽⁴⁾	RPF8R	RPF8R<3:0>	1100 - Reserved
RPC3 ⁽⁴⁾	RPC3R	RPC3R<3:0>	1110 = Reserved
RPE9 ⁽⁴⁾	RPE9R	RPE9R<3:0>	1111 = Reserved
RPD1	RPD1R	RPD1R<3:0>	0000 = No Connect
RPG9	RPG9R	RPG9R<3:0>	0001 = U2RTS
RPB14	RPB14R	RPB14R<3:0>	0010 = Reserved 0011 = U1RTS
RPD0	RPD0R	RPD0R<3:0>	$0100 = U5TX^{(4)}$
RPD8	RPD8R	RPD8R<3:0>	0101 = Reserved
RPB6	RPB6R	RPB6R<3:0>	0110 = <u>SS2</u>
RPD5	RPD5R	RPD5R<3:0>	0111 = Reserved 1000 = SDO1
RPF3 ⁽³⁾	RPF3R	RPF3R<3:0>	1000 = SDOT
RPF6 ⁽¹⁾	RPF6R	RPF6R<3:0>	1010 = Reserved
RPF13 ⁽⁴⁾	RPF13R	RPF13R<3:0>	1011 = OC2
RPC2 ⁽⁴⁾	RPC2R	RPC2R<3:0>	1100 = OC1 1101 = Reserved
RPE8 ⁽⁴⁾	RPE8R	RPE8R<3:0>	1110 = Reserved
RPF2 ⁽⁵⁾	RPF2R	RPF2R<3:0>	1111 = Reserved

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

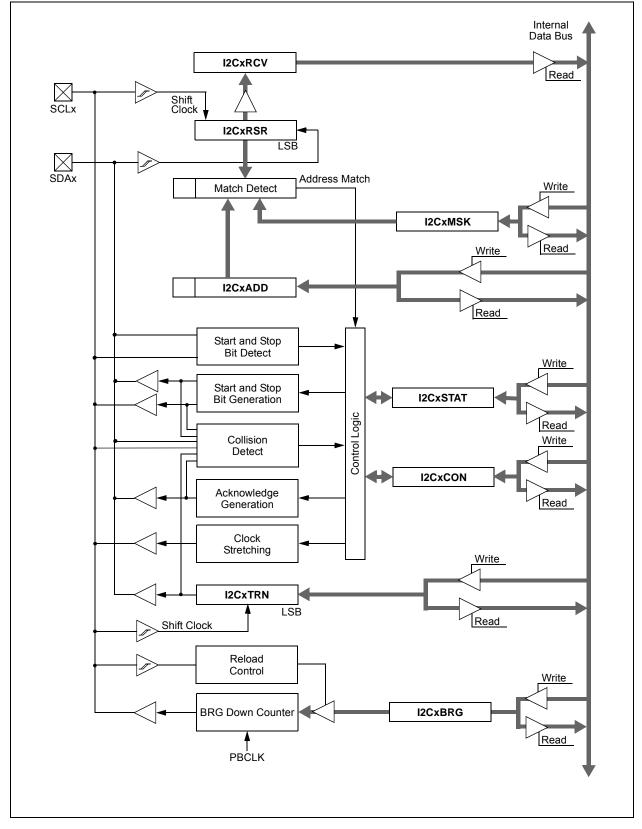
3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	_	_		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	-	_	_	_	—
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	_	SIDL	_	_		_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_		_	_	_	_	_	

Legend:


R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = CPU Idle Mode halts CN operation
 - 0 = CPU Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

PIC32MX330/350/370/430/450/470

FIGURE 19-1: I²C BLOCK DIAGRAM

REGISTER 19-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	-	-	—	_	-	_		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16		—	_	_	_		_	-		
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC		
15:8	ACKSTAT	TRSTAT	-	_	_	BCL	GCSTAT	ADD10		
7:0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF		

Legend:	HS = Set in hardware	HSC = Hardware set/cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit	

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 **GCSTAT:** General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

- bit 7 IWCOL: Write Collision Detect bit
 - 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy
 - 0 = No collision

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

bit 6 I2COV: Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PTEN<1	5:14> ⁽¹⁾	(1) PTEN<13:8>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTEN	<7:2>			PTEN<	<1:0> ⁽²⁾

REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-14 **PTEN<15:14>:** PMCSx Address Port Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1⁽¹⁾
 - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Address Port Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМИ	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
2C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX330/350/ 370/430/450/470 Controller Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3)	-0.3V to +6.0V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum output current sourced/sunk by any 4x I/O pin	15 mA
Maximum output current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sunk by all ports	150 mA
Maximum current sourced by all ports (Note 2)	150 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

TABLE 31-18: EXTERNAL CLOCK TIMING REQUIREMENTS

	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)						
AC CHA	RACTER	RISTICS	$ \begin{array}{c} \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4	_	50 50	MHz MHz	EC (Note 4) ECPLL (Note 3)
OS11		Oscillator Crystal Frequency	3		10	MHz	XT (Note 4)
OS12			4		10	MHz	XTPLL (Notes 3,4)
OS13			10		25	MHz	HS (Note 4)
OS14			10	_	25	MHz	HSPLL (Notes 3,4)
OS15			32	32.768	100	kHz	Sosc (Note 4)
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	_	—	_	_	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc		_	ns	EC (Note 4)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	_	0.05 x Tosc	ns	EC (Note 4)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12	_	mA/V	VDD = 3.3V, TA = +25°C (Note 4)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

- 2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.
- **3:** PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

AC CHA	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercia} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Charac	teristics	Min. ⁽¹⁾ Max. Units Conditions						
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		ns	—			
		Hold Time	400 kHz mode	Трв * (BRG + 2)	—	ns				
			1 MHz mode (Note 2)	Трв * (BRG + 2)	G + 2) — ns					
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—			
		from Clock	400 kHz mode	—	1000	ns	—			
			1 MHz mode (Note 2)	—	350	ns	—			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	The amount of time the			
			400 kHz mode	1.3	—	μS	bus must be free before a new transmission can start			
			1 MHz mode (Note 2)	0.5	—	μS				
IM50	Св	Bus Capacitive L	oading	—	400	pF	—			
IM51	Tpgd	Pulse Gobbler D	elay	52	312	ns	See Note 3			

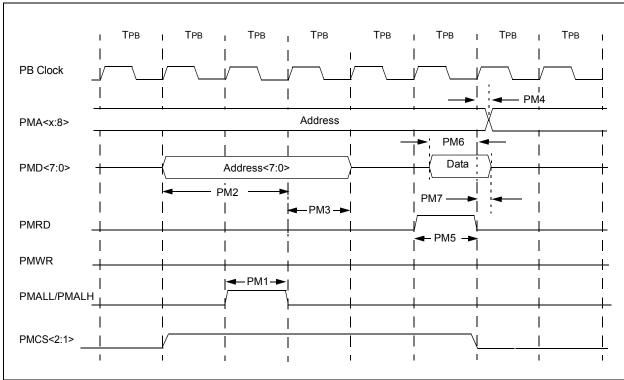
Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

AC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min. Typical ⁽¹⁾ Max. Units Conditions					
Clock P	arameter	S						
AD50	TAD	ADC Clock Period ⁽²⁾	65			ns	See Table 31-36	
Conver	sion Rate	•						
AD55	TCONV	Conversion Time	_	12 Tad	_	_	—	
AD56	FCNV	Throughput Rate	_	_	1000	ksps	AVDD = 3.0V to 3.6V	
		(Sampling Speed) ⁽⁴⁾	_	—	400	ksps	AVDD = 2.5V to 3.6V	
AD57	TSAMP	Sample Time	2 Tad	_	—	_	—	
Timing	Paramete	rs						
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 TAD	—	1.5 TAD	_	-	
AD62	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—	_	-	
AD63	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	_	

TABLE 31-37: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: Refer to Table 31-36 for detailed conditions.

PIC32MX330/350/370/430/450/470

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 31-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercia} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. Max. Units Condition				
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	_	_	_
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 Трв	—		—
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	—		
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	—	ns	_
PM5	Trd	PMRD Pulse Width	—	1 Трв	_	—	—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	—
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 Трв	—	—	—	PMP Clock

Note 1: These parameters are characterized, but not tested in manufacturing.